Pediatric Clinical Trials

  • Use of T-allo10 in Hematopoietic Stem Cell Transplantation (HSCT) for Blood Disorders

    A significant number of patients with hematologic malignancies need a hematopoietic stem cell transplant (HSCT) to be cured. Only about 50% of these patients have a fully matched donor, the remaining patients will require an HSCT from a mismatched related or unrelated donor. Almost 60% of these mismatched donor HSCTs will result in graft-versus-host disease (GvHD), which can cause significant morbidity and increased non-relapse mortality. GvHD is caused by the donor effector T cells present in the HSC graft that recognize and react against the mismatched patient's tissues.

    Researchers and physicians at Lucile Packard Children's Hospital, Stanford are working to prevent GvHD after HSCT with a new clinical trial. The objective of this clinical program is to develop a cell therapy to prevent GvHD and induce graft tolerance in patients receiving mismatched unmanipulated donor HSCT. The cell therapy consists of a cell preparation from the same donor of the HSCT (T-allo10) containing T regulatory type 1 (Tr1) cells able to suppress allogenic (host-specific) responses, thus decreasing the incidence of GvHD.

    This is the first trial of its kind in pediatric patients and is only available at Lucile Packard Children's Hospital, Stanford.

    The purpose of this phase 1 study is to determine the safety and tolerability of a cell therapy, T-allo10, to prevent GvHD in patients receiving mismatched related or mismatched unrelated unmanipulated donor HSCT for hematologic malignancies.

    Investigator

    Now accepting new patients View Details
  • Web-Based Physical Activity Intervention in Improving Long Term Health in Children and Adolescents With Cancer

    This randomized clinical phase III trial studies how well web-based physical activity intervention works in improving long term health in children and adolescents with cancer. Regular physical activity after receiving treatment for cancer may help to maintain a healthy weight and improve energy levels and overall health.

    Now accepting new patients View Details
  • Study of Venetoclax in Combination With Chemotherapy in Pediatric Patients With Refractory or Relapsed Acute Myeloid Leukemia or Acute Leukemia of Ambiguous Lineage

    The purpose of this study is to test the safety and determine the best dose of venetoclax and cytarabine when given with or without idarubicin in treating pediatric patients with acute myeloid leukemia (AML) that did not respond to treatment (refractory) or has come back after treatment (relapsed).

    PRIMARY OBJECTIVE: Determine a tolerable combination of venetoclax plus chemotherapy in pediatric patients with relapsed or refractory AML or acute leukemia of ambiguous lineage. The primary endpoints are the recommended phase 2 doses (RP2D) of venetoclax plus cytarabine and venetoclax plus cytarabine and idarubicin.

    SECONDARY OBJECTIVE: Estimate the overall response rate to the combination of venetoclax and chemotherapy in pediatric patients with relapsed or refractor AML or acute leukemia of ambiguous lineage. The secondary endpoints are the rates of complete remission (CR) and complete remission with incomplete count recovery (CRi) for patients treated at the RP2D.

    Investigator

    Now accepting new patients View Details
  • Reduced Craniospinal Radiation Therapy and Chemotherapy in Treating Younger Patients With Newly Diagnosed WNT-Driven Medulloblastoma

    This phase II trial studies how well reduced doses of radiation therapy to the brain and spine (craniospinal) and chemotherapy work in treating patients with newly diagnosed type of brain tumor called WNT)/Wingless (WNT)-driven medulloblastoma. Recent studies using chemotherapy and radiation therapy have been shown to be effective in treating patients with WNT-driven medulloblastoma. However, there is a concern about the late side effects of treatment, such as learning difficulties, lower amounts of hormones, or other problems in performing daily activities. Radiotherapy uses high-energy radiation from x-rays to kill cancer cells and shrink tumors. Drugs used in chemotherapy, such as cisplatin, vincristine sulfate, cyclophosphamide and lomustine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving reduced craniospinal radiation therapy and chemotherapy may kill tumor cells and may also reduce the late side effects of treatment.

    Now accepting new patients View Details
  • Stem Cell Transplant From Donors After Alpha Beta Cell Depletion in Children and Young Adults

    The purpose of the CliniMACS® TCRαβ-Biotin System and CliniMACS® CD19 is to improve the safety and efficacy of allogeneic HLA-partially matched related or unrelated donors HSCT when no matched donors are available, to treat malignant and nonmalignant disorders for which HSCT is the recommended best available therapy. Initially this device will be used in a single-center, open-label, single-arm, phase II clinical trial to evaluate the efficacy of haploidentical PBSC grafts depleted of TCRα/β+ and CD19+ cells using the CliniMACS® TCRαβ/CD19 System in children and adults with hematological and non-hematological malignancies.

    Now accepting new patients View Details
  • Phase 2 Study of Alisertib Therapy for Rhabdoid Tumors

    This study incorporates alisertib, the small-molecule inhibitor of Aurora A activity, in the treatment of patients younger than 22 years of age. Patients with recurrent or refractory AT/RT or MRT will receive alisertib as a single agent. Patients with newly diagnosed AT/RT will receive alisertib as part of age- and risk-adapted chemotherapy. Radiation therapy will be given to children ≥12 months of age. Patients with AT/RT and concurrent extra-CNS MRT are eligible.

    Alisertib will be administered as a single agent on days 1-7 of each 21-day cycle in all recurrent patients enrolled on Stratum A. For the patients on the newly diagnosed strata (B, C or D), alisertib will be administered in sequence with chemotherapy and radiotherapy.

    This study has 3 primary strata: (A) children with recurrent/progressive AT/RT or extra-CNS MRT, (B) children < 36 months-old with newly diagnosed AT/RT, (C) children > 36 months old with newly diagnosed AT/RT. Children with concurrent MRT will be treated according to age and risk stratification schemes outlined for strata B and C and will have additional treatment for local control. Children with synchronous AT/RT will be treated with age and CNS risk-appropriate therapy, and also receive surgery and/or radiation therapy for local control of the non-CNS tumor.

    PRIMARY OBJECTIVES

    - To estimate the sustained objective response rate and disease stabilization in pediatric patients with recurrent or progressive AT/RT (atypical teratoid rhabdoid tumor in the CNS) (Stratum A1) treated with alisertib and to determine if the response is sufficient to merit continued investigation of alisertib in this population.

    - To estimate the sustained objective response rate and disease stabilization in pediatric patients with recurrent or progressive extra-CNS MRT (malignant rhabdoid tumor outside the CNS) (Stratum A2) treated with alisertib and to determine if the response is sufficient to merit continued investigation of alisertib in this population.

    - To estimate the 3-year PFS rate of patients with newly diagnosed AT/RT who are younger than 36 months of age at diagnosis with no metastatic disease (Stratum B1) treated with alisertib in sequence with induction and consolidation chemotherapy and radiation therapy (depending on age) and to determine if the rates are sufficient to merit continued investigation of alisertib in this population.

    - To estimate the 1-year PFS rate of patients with newly diagnosed AT/RT who are younger than 36 months of age at diagnosis, with metastatic disease (Stratum B2) treated with alisertib in sequence with induction and consolidation chemotherapy and to determine if the rates are sufficient to merit continued investigation of alisertib in this population.

    - To estimate the 3-year PFS rate of patients with newly diagnosed AT/RT who are 3 years of age or greater at diagnosis with no metastatic disease and gross total resection or near total resection (Stratum C1) treated with alisertib in sequence with radiation therapy and consolidation chemotherapy and to determine if the rates are sufficient to merit continued investigation of alisertib in this population.

    - To estimate the 1-year PFS rate of patients with newly diagnosed AT/RT who are 3 years of age or greater at diagnosis with metastatic or residual disease (Stratum C2) treated with alisertib in sequence with radiation therapy and consolidation chemotherapy and to determine if the rates are sufficient to merit continued investigation of alisertib in this population.

    - To characterize the pharmacokinetics and pharmacodynamics of alisertib in pediatric patients and to relate drug disposition to toxicity.

    SECONDARY OBJECTIVES

    - To estimate the duration of objective response and PFS in patients with recurrent/progressive AT/RT and MRT (Strata A1 and A2).

    - To estimate PFS and OS distributions in patients with newly diagnosed AT/RT (Strata B1, B2, B3, C1 and C2).

    - To describe toxicities experienced by patients treated on this trial, specifically any toxicities of alisertib when administered as a single agent or in combination with other therapy over multiple courses and toxicities related to proton or photon radiation therapy.

    - To describe the patterns of local and distant failure in newly diagnosed patients (Strata B1, B2, B3, C1 and C2). Local control relative to primary-site radiation therapy, with criteria for infield, marginal, or distant failure will also be reported descriptively.

    Now accepting new patients View Details
  • Phase I Dose Escalation Study of CD19/CD22 Chimeric Antigen Receptor (CAR) T Cells in Children and Young Adults With Recurrent or Refractory B Cell Malignancies

    This phase I trial studies the best dose and side effects of CD19/CD22 chimeric antigen receptor (CAR) T cells when given together with chemotherapy, and to see how well they work in treating children or young adults with CD19 positive B acute lymphoblastic leukemia that has come back or does not respond to treatment. A CAR is a genetically-engineered receptor made so that immune cells (T cells) can attack cancer cells by recognizing and responding to the CD19/CD22 proteins. These proteins are commonly found on B acute lymphoblastic leukemia. Drugs used in chemotherapy, such as fludarabine phosphate and cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving CD19/CD22-CAR T cells and chemotherapy may work better in treating children or young adults with B acute lymphoblastic leukemia.

    Now accepting new patients View Details
  • Pembrolizumab in Treating Younger Patients With Recurrent, Progressive, or Refractory High-Grade Gliomas, Diffuse Intrinsic Pontine Gliomas, Hypermutated Brain Tumors, Ependymoma or Medulloblastoma

    This phase I trial studies the side effects and best dose of pembrolizumab and to see how well it works in treating younger patients with high-grade gliomas (brain tumors that are generally expected to be fast growing and aggressive), diffuse intrinsic pontine gliomas (brain stem tumors), brain tumors with a high number of genetic mutations, ependymoma or medulloblastoma that have come back (recurrent), progressed, or have not responded to previous treatment (refractory). Immunotherapy with monoclonal antibodies, such as pembrolizumab, may induce changes in the body's immune system, and may interfere with the ability of tumor cells to grow and spread.

    Now accepting new patients View Details
  • Nivolumab With or Without Ipilimumab in Treating Younger Patients With Recurrent or Refractory Solid Tumors or Sarcomas

    This phase I/II trial studies the side effects and best dose of nivolumab when given with or without ipilimumab to see how well they work in treating younger patients with solid tumors or sarcomas that have come back (recurrent) or do not respond to treatment (refractory). Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. It is not yet known whether nivolumab works better alone or with ipilimumab in treating patients with recurrent or refractory solid tumors or sarcomas.

    Now accepting new patients View Details
  • Non-Invasive Diagnosis of Pediatric Pulmonary Invasive Mold Infections

    This study will establish a non-invasive diagnostic approach and evaluate clinical outcomes for children at high-risk for pulmonary invasive fungal infection (PIFI).

    Investigator

    Now accepting new patients View Details
  • Imatinib Mesylate and Combination Chemotherapy in Treating Patients With Newly Diagnosed Philadelphia Chromosome Positive Acute Lymphoblastic Leukemia

    This randomized phase III trial studies how well imatinib mesylate works in combination with two different chemotherapy regimens in treating patients with newly diagnosed Philadelphia chromosome positive acute lymphoblastic leukemia (ALL). Imatinib mesylate has been shown to improve outcomes in children and adolescents with Philadelphia chromosome positive (Ph+) ALL when given with strong chemotherapy, but the combination has many side effects. This trial is testing whether a different chemotherapy regimen may work as well as the stronger one but have fewer side effects when given with imatinib. The trial is also testing how well the combination of chemotherapy and imatinib works in another group of patients with a type of ALL that is similar to Ph+ ALL. This type of ALL is called "ABL-class fusion positive ALL", and because it is similar to Ph+ ALL, is thought it will respond well to the combination of agents used to treat Ph+ ALL.

    Now accepting new patients View Details
  • GD2 CAR T Cells in Diffuse Intrinsic Pontine Gliomas(DIPG) & Spinal Diffuse Midline Glioma(DMG)

    The primary purpose of this study is to test whether GD2-CAR T cells can be successfully made from immune cells collected from children and young adults with H3K27M-mutant diffuse intrinsic pontine glioma (DIPG) or spinal H3K27M-mutant diffuse midline glioma (DMG). H3K27Mmutant testing will occur as part of standard of care prior to enrollment.

    Now accepting new patients View Details
  • Azacitidine and Combination Chemotherapy in Treating Infants With Acute Lymphoblastic Leukemia and KMT2A Gene Rearrangement

    This pilot phase II trial studies the side effects of azacitidine and combination chemotherapy in infants with acute lymphoblastic leukemia and KMT2A gene rearrangement. Drugs used in chemotherapy, such as methotrexate, prednisolone, daunorubicin hydrochloride, cytarabine, dexamethasone, vincristine sulfate, pegaspargase, hydrocortisone sodium succinate, azacitidine, cyclophosphamide, mercaptopurine, leucovorin calcium, and thioguanine work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug may kill more cancer cells.

    Now accepting new patients View Details
  • A Study to Test the Safety and Efficacy of the Drug Larotrectinib for the Treatment of Tumors With NTRK-fusion in Children

    The study is being done to test the safety of a cancer drug called larotrectinib in children. The cancer must have a change in a particular gene (NTRK1, NTRK2 or NTRK3). Larotrectinib blocks the actions of these NTRK genes in cancer cells and can therefore be used to treat cancer.

    The first study part (Phase 1) is done to determine what dose level of larotrectinib is safe for children, how the drug is absorbed and changed by their bodies and how well the cancer responds to the drug. The main purpose of the second study part (Phase 2) is to investigate how well and how long different cancer types respond to the treatment with larotrectininb.

    Now accepting new patients View Details
  • Active Surveillance, Bleomycin, Etoposide, Carboplatin or Cisplatin in Treating Pediatric and Adult Patients With Germ Cell Tumors

    This phase III trial studies how well active surveillance help doctors to monitor subjects with low risk germ cell tumors for recurrence after their tumor is removed. When the germ cell tumors has spread outside of the organ in which it developed, it is considered metastatic. Drugs used in chemotherapy, such as bleomycin, carboplatin, etoposide, and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. The trial studies whether carboplatin or cisplatin is the preferred chemotherapy to use in treating metastatic standard risk germ cell tumors.

    Now accepting new patients View Details
  • A Phase 2 Study of Ruxolitinib With Chemotherapy in Children With Acute Lymphoblastic Leukemia

    This is a nonrandomized study of ruxolitinib in combination with a standard multi-agent chemotherapy regimen for the treatment of B-cell acute lymphoblastic leukemia. Part 1 of the study will optimize the dose of study drug (ruxolitinib) in combination with the chemotherapy regimen. Part 2 will evaluate the efficacy of combination chemotherapy and ruxolitinib at the recommended dose determined in Part 1.

    Now accepting new patients View Details
  • A Study of Nivolumab Plus Brentuximab Vedotin in Patients Between 5 and 30 Years Old, With Hodgkin's Lymphoma (cHL), Relapsed or Refractory From First Line Treatment

    The purpose of this study is to determine whether nivolumab plus brentuximab vedotin (followed by brentuximab vedotin plus bendamustine in patient with suboptimal response) is safe and effective in treating patients with Hodgkin's lymphoma (cHL). Eligible patients are children, adolescents, and young adults relapsed or refractory to first line.

    Now accepting new patients View Details