Stanford Neurosurgery Research

The Department of Neurosurgery is a world leader in the fast-paced environment of innovative research translation. The rich intellectual environment at Stanford, paired with our accessibility to the most advanced technology, is unmatched and ensures the rapid translation of pioneering laboratory research into life-saving clinical therapies for our patients.

From anti-cancer therapies and stem cell transplantation therapies for spinal cord injury to the elucidation of retinal neural circuitry and gene-environment interactions in fetal development, our research scientists are making quick progress tackling some of the most complex neurological disease questions in the neurodegenerative and neuroregenerative fields today.

Our Department supports over 30 active labs investigating everything from brain injury, deep brain stimulation, brain tumors, epilepsy, pathophysiology and treatment of acute stroke, to the effects of stress and aging on the nervous system. And, although our research themes vary from lab to lab, they are all focused on aspects of disease and injury that can be investigated at the bench – and they all have clear implications for practices in the clinic and operating room.

Research Highlights

Stem Cell Therapy for Stroke

The California Institute for Regenerative Medicine hosts Dr. Gary Steinberg in an "Ask the Expert" Facebook Live event about his clinical research  on the use of stem cell therapy for stroke. 

Obesity Neurostimulation Study

Learn More:

Featured Publications

Comparative effectiveness of neuroablation and DBS for treatment-resistant OCD

In a new meta-analytic study, Stanford researchers found neuroablation more effective than deep brain stimulation for treatment refractory obssesive compulsive disorder. 

Intratumoral heterogeneity of endogenous tumor cell invasive behavior in human glioblastoma

This study's unique approach to use time lapse confocal microscopy to image living human tumor tissue that is kept alive and thinly sliced, and not broken up into single cells as is commonly performed, may open doors to pre-clinical evaluation of anti-invasive therapies in a personalized, patient-specific fashion.

The fragile X mutation impairs homeostatic plasticity in human neurons by blocking synaptic retinoic acid signaling

A team of Stanford researchers, including Lu Chen, PhD, Professor of Neurosurgery, published a new study suggesting that reactivation of retinoic acid signaling might be a beneficial therapeutic strategy for fragile X syndrome.

Novel application of virtual reality in patient engagement for deep brain stimulation: A pilot study

A study conducted by the Stanford Neurosurgical Simulation & Virtual Reality Center, obtained direct patient feedback on the impact of three-dimensional, 360-degree virtual reality (3D 360VR) on satisfaction and understanding during new and preoperative DBS clinic consultations. 

Computationally Developed Sham Stimulation Protocol for Multichannel Desynchronizing Stimulation

This computational study compares acute effects and long-lasting effects of six different spatio-temporally patterned stimulation protocols, including three variants of CR, using a no-stimulation condition as additional control. 

Single-Cell RNA-Seq Analysis of Infiltrating Neoplastic Cells at the Migrating Front of Human Glioblastoma

Using single-cell RNA sequencing, researchers in Dr. Melanie Hayden-Gephart's lab have isolated glioblastoma cells migrating within otherwise normal-appearing brain, and determined the genetic mechanisms used for migration.

Closing the loop on impulsivity via nucleus accumbens delta-band activity in mice and man

Stanford Neurosurgeons have identified a signature pattern of electrical activity in a small, deep-brain region just a second or two before a burst of impulsive behavior. The findings could lead to less invasive methods of countering obesity, substance-abuse disorders, pathological gambling, sexual addiction or intermittent explosive disorder.

New Research Center

Our new Stanford Neurosurgical Training and Innovation Center's goal is to improve surgical techniques and outcomes through mastery of surgical neuroanatomy, focusing on enhancing understanding of endoscopic skull base anatomy, microsurgical neuroanatomy, white matter dissection and imaging, and virtual reality for surgical planning.

Neuroscience Club and Internship

As part of an effort to encourage young scientists to consider a career in the neurosciences, we've created the Stanford Neuroscience Journal Club and the Harris Neuroscience Internship. These programs provide mentorship by expert Stanford scientists and an opportunity to engage in scholarly activities related to neuroscience and neurosurgery.

Research In The News

People with Paralysis Equipped with Brain Implant Operate Computer Just by Thinking

In a new clinical trial, Stanford Neurosurgeons Dr. Jaimie Henderson and Paul Nuyujukian, PhD, demonstrate that people with paralysis who have been equiped with a brain implant can now write emails, watch videos, or shop online, just by thinking.

Deep Brain Stimulation May Prove Effective for Alcoholism

Preliminary studies by Stanford neurosurgeon, Dr. Casey Halpern, and resident, Dr. Allen Ho, show Deep Brain Stimulation may be a beneficial therapy for those with severe alcoholism.

Defects in Mitochondria Further Linked to Parkinson’s in Stanford Study

New research by Assistant Professor of Neurosurgery, Xinnan Wang, PhD, finds that mitochondrial malfunctions in certain nerve cells may contribute to certain Parkinson's disease symptoms. 

Stanford Study Finds Specific Set of Nerve Cells Controls Seizures’ Spread through Brain

The results of a new study identifying a specific set of cells that control temporal lobe epileptic seizures, could lead to more effective therapies for people with this common type of epilepsy.