Infectious Diseases
Research Labs
Click for Postdoc Opportunities
The Andrews Lab
Control of Infectious Diseases in Resource-Limited Settings
Our laboratory aims to develop innovative approaches to the control of infectious diseases in resource-limited settings. Drawing upon the fields of epidemiology, microbiology and engineering, we strive to find solutions to extend the technologies that underlie diagnosis and treatment of infectious diseases to "last-mile" communities.
Publications
-
Global, regional, and national estimates of tuberculosis incidence and case detection among incarcerated individuals from 2000 to 2019: a systematic analysis.
The Lancet. Public health
Martinez, L., Warren, J. L., Harries, A. D., Croda, J., Espinal, M. A., Olarte, R. A., Avedillo, P., Lienhardt, C., Bhatia, V., Liu, Q., Chakaya, J., Denholm, J. T., Lin, Y., Kawatsu, L., Zhu, L., Horsburgh, C. R., Cohen, T., Andrews, J. R.
2023; 8 (7): e511-e519
Hide
More
Abstract
People who are incarcerated are at high risk of developing tuberculosis. We aimed to estimate the annual global, regional, and national incidence of tuberculosis among incarcerated populations from 2000 to 2019.We collected and aggregated data for tuberculosis incidence and prevalence estimates among incarcerated individuals in published and unpublished literature, annual tuberculosis notifications among incarcerated individuals at the country level, and the annual number of incarcerated individuals at the country level. We developed a joint hierarchical Bayesian meta-regression framework to simultaneously model tuberculosis incidence, notifications, and prevalence from 2000 to 2019. Using this model, we estimated trends in absolute tuberculosis incidence and notifications, the incidence and notification rates, and the case detection ratio by year, country, region, and globally.In 2019, we estimated a total of 125 105 (95% credible interval [CrI] 93 736-165 318) incident tuberculosis cases among incarcerated individuals globally. The estimated incidence rate per 100 000 person-years overall was 1148 (95% CrI 860-1517) but varied greatly by WHO region, from 793 (95% CrI 430-1342) in the Eastern Mediterranean region to 2242 (1515-3216) in the African region. Global incidence per 100 000 person-years between 2000 and 2012 among incarcerated individuals decreased from 1884 (95% CrI 1394-2616) to 1205 (910-1615); however, from 2013 onwards, tuberculosis incidence per 100 000 person-years was stable, from 1183 (95% CrI 876-1596) in 2013 to 1148 (860-1517) in 2019. In 2019, the global case detection ratio was estimated to be 53% (95% CrI 42-64), the lowest over the study period.Our estimates suggest a high tuberculosis incidence rate among incarcerated individuals globally with large gaps in tuberculosis case detection. Tuberculosis in incarcerated populations must be addressed with interventions specifically tailored to improve diagnoses and prevent transmission as a part of the broader global tuberculosis control effort.National Institutes of Health.
View details for DOI 10.1016/S2468-2667(23)00097-X
View details for PubMedID 37393090
-
Infant BCG vaccination and risk of pulmonary and extrapulmonary tuberculosis throughout the life course: a systematic review and individual participant data meta-analysis.
The Lancet. Global health
Martinez, L., Cords, O., Liu, Q., Acuna-Villaorduna, C., Bonnet, M., Fox, G. J., Carvalho, A. C., Chan, P. C., Croda, J., Hill, P. C., Lopez-Varela, E., Donkor, S., Fielding, K., Graham, S. M., Espinal, M. A., Kampmann, B., Reingold, A., Huerga, H., Villalba, J. A., Grandjean, L., Sotgiu, G., Egere, U., Singh, S., Zhu, L., Lienhardt, C., Denholm, J. T., Seddon, J. A., Whalen, C. C., García-Basteiro, A. L., Triasih, R., Chen, C., Singh, J., Huang, L. M., Sharma, S., Hannoun, D., Del Corral, H., Mandalakas, A. M., Malone, L. L., Ling, D. L., Kritski, A., Stein, C. M., Vashishtha, R., Boulahbal, F., Fang, C. T., Boom, W. H., Netto, E. M., Lemos, A. C., Hesseling, A. C., Kay, A., Jones-López, E. C., Horsburgh, C. R., Lange, C., Andrews, J. R.
2022; 10 (9): e1307-e1316
Hide
More
Abstract
BCG vaccines are given to more than 100 million children every year, but there is considerable debate regarding the effectiveness of BCG vaccination in preventing tuberculosis and death, particularly among older children and adults. We therefore aimed to investigate the age-specific impact of infant BCG vaccination on tuberculosis (pulmonary and extrapulmonary) development and mortality.In this systematic review and individual participant data meta-analysis, we searched MEDLINE, Web of Science, BIOSIS, and Embase without language restrictions for case-contact cohort studies of tuberculosis contacts published between Jan 1, 1998, and April 7, 2018. Search terms included "mycobacterium tuberculosis", "TB", "tuberculosis", and "contact". We excluded cohort studies that did not provide information on BCG vaccination or were done in countries that did not recommend BCG vaccination at birth. Individual-level participant data for a prespecified list of variables, including the characteristics of the exposed participant (contact), the index case, and the environment, were requested from authors of all eligible studies. Our primary outcome was a composite of prevalent (diagnosed at or within 90 days of baseline) and incident (diagnosed more than 90 days after baseline) tuberculosis in contacts exposed to tuberculosis. Secondary outcomes were pulmonary tuberculosis, extrapulmonary tuberculosis, and mortality. We derived adjusted odds ratios (aORs) using mixed-effects, binary, multivariable logistic regression analyses with study-level random effects, adjusting for the variable of interest, baseline age, sex, previous tuberculosis, and whether data were collected prospectively or retrospectively. We stratified our results by contact age and Mycobacterium tuberculosis infection status. This study is registered with PROSPERO, CRD42020180512.We identified 14 927 original records from our database searches. We included participant-level data from 26 cohort studies done in 17 countries in our meta-analysis. Among 68 552 participants, 1782 (2·6%) developed tuberculosis (1309 [2·6%] of 49 686 BCG-vaccinated participants vs 473 [2·5%] of 18 866 unvaccinated participants). The overall effectiveness of BCG vaccination against all tuberculosis was 18% (aOR 0·82, 95% CI 0·74-0·91). When stratified by age, BCG vaccination only significantly protected against all tuberculosis in children younger than 5 years (aOR 0·63, 95% CI 0·49-0·81). Among contacts with a positive tuberculin skin test or IFNγ release assay, BCG vaccination significantly protected against tuberculosis among all participants (aOR 0·81, 95% CI 0·69-0·96), participants younger than 5 years (0·68, 0·47-0·97), and participants aged 5-9 years (0·62, 0·38-0·99). There was no protective effect among those with negative tests, unless they were younger than 5 years (0·54, 0·32-0·90). 14 cohorts reported on whether tuberculosis was pulmonary or extrapulmonary (n=57 421). BCG vaccination significantly protected against pulmonary tuberculosis among all participants (916 [2·2%] in 41 119 vaccinated participants vs 334 [2·1%] in 16 161 unvaccinated participants; aOR 0·81, 0·70-0·94) but not against extrapulmonary tuberculosis (106 [0·3%] in 40 318 vaccinated participants vs 38 [0·2%] in 15 865 unvaccinated participants; 0·96, 0·65-1·41). In the four studies with mortality data, BCG vaccination was significantly protective against death (0·25, 0·13-0·49).Our results suggest that BCG vaccination at birth is effective at preventing tuberculosis in young children but is ineffective in adolescents and adults. Immunoprotection therefore needs to be boosted in older populations.National Institutes of Health.
View details for DOI 10.1016/S2214-109X(22)00283-2
View details for PubMedID 35961354
-
The international and intercontinental spread and expansion of antimicrobial-resistant Salmonella Typhi: a genomic epidemiology study.
The Lancet. Microbe
da Silva, K. E., Tanmoy, A. M., Pragasam, A. K., Iqbal, J., Sajib, M. S., Mutreja, A., Veeraraghavan, B., Tamrakar, D., Qamar, F. N., Dougan, G., Bogoch, I., Seidman, J. C., Shakya, J., Vaidya, K., Carey, M. E., Shrestha, R., Irfan, S., Baker, S., Luby, S. P., Cao, Y., Dyson, Z. A., Garrett, D. O., John, J., Kang, G., Hooda, Y., Saha, S. K., Saha, S., Andrews, J. R.
2022
Hide
More
Abstract
The emergence of increasingly antimicrobial-resistant Salmonella enterica serovar Typhi (S Typhi) threatens to undermine effective treatment and control. Understanding where antimicrobial resistance in S Typhi is emerging and spreading is crucial towards formulating effective control strategies.In this genomic epidemiology study, we sequenced the genomes of 3489 S Typhi strains isolated from prospective enteric fever surveillance studies in Nepal, Bangladesh, Pakistan, and India (between 2014 and 2019), and combined these with a global collection of 4169 S Typhi genome sequences isolated between 1905 and 2018 to investigate the temporal and geographical patterns of emergence and spread of antimicrobial-resistant S Typhi. We performed non-parametric phylodynamic analyses to characterise changes in the effective population size of fluoroquinolone-resistant, extensively drug-resistant (XDR), and azithromycin-resistant S Typhi over time. We inferred timed phylogenies for the major S Typhi sublineages and used ancestral state reconstruction methods to estimate the frequency and timing of international and intercontinental transfers.Our analysis revealed a declining trend of multidrug resistant typhoid in south Asia, except for Pakistan, where XDR S Typhi emerged in 2016 and rapidly replaced less-resistant strains. Mutations in the quinolone-resistance determining region (QRDR) of S Typhi have independently arisen and propagated on at least 94 occasions, nearly all occurring in south Asia. Strains with multiple QRDR mutations, including triple mutants with high-level fluoroquinolone resistance, have been increasing in frequency and displacing strains with fewer mutations. Strains containing acrB mutations, conferring azithromycin resistance, emerged in Bangladesh around 2013 and effective population size of these strains has been steadily increasing. We found evidence of frequent international (n=138) and intercontinental transfers (n=59) of antimicrobial-resistant S Typhi, followed by local expansion and replacement of drug-susceptible clades.Independent acquisition of plasmids and homoplastic mutations conferring antimicrobial resistance have occurred repeatedly in multiple lineages of S Typhi, predominantly arising in south Asia before spreading to other regions.Bill & Melinda Gates Foundation.
View details for DOI 10.1016/S2666-5247(22)00093-3
View details for PubMedID 35750070
-
Estimating typhoid incidence from community-based serosurveys: a multicohort study.
The Lancet. Microbe
Aiemjoy, K., Seidman, J. C., Saha, S., Munira, S. J., Islam Sajib, M. S., Sium, S. M., Sarkar, A., Alam, N., Zahan, F. N., Kabir, M. S., Tamrakar, D., Vaidya, K., Shrestha, R., Shakya, J., Katuwal, N., Shrestha, S., Yousafzai, M. T., Iqbal, J., Dehraj, I. F., Ladak, Y., Maria, N., Adnan, M., Pervaiz, S., Carter, A. S., Longley, A. T., Fraser, C., Ryan, E. T., Nodoushani, A., Fasano, A., Leonard, M. M., Kenyon, V., Bogoch, I. I., Jeon, H. J., Haselbeck, A., Park, S. E., Zellweger, R. M., Marks, F., Owusu-Dabo, E., Adu-Sarkodie, Y., Owusu, M., Teunis, P., Luby, S. P., Garrett, D. O., Qamar, F. N., Saha, S. K., Charles, R. C., Andrews, J. R.
2022
Hide
More
Abstract
The incidence of enteric fever, an invasive bacterial infection caused by typhoidal Salmonellae (Salmonella enterica serovars Typhi and Paratyphi), is largely unknown in regions without blood culture surveillance. The aim of this study was to evaluate whether new diagnostic serological markers for typhoidal Salmonella can reliably estimate population-level incidence.We collected longitudinal blood samples from patients with blood culture-confirmed enteric fever enrolled from surveillance studies in Bangladesh, Nepal, Pakistan, and Ghana between 2016 and 2021 and conducted cross-sectional serosurveys in the catchment areas of each surveillance site. We used ELISAs to measure quantitative IgA and IgG antibody responses to hemolysin E and S Typhi lipopolysaccharide. We used Bayesian hierarchical models to fit two-phase power-function decay models to the longitudinal antibody responses among enteric fever cases and used the joint distributions of the peak antibody titres and decay rate to estimate population-level incidence rates from cross-sectional serosurveys.The longitudinal antibody kinetics for all antigen-isotypes were similar across countries and did not vary by clinical severity. The seroincidence of typhoidal Salmonella infection among children younger than 5 years ranged between 58·5 per 100 person-years (95% CI 42·1-81·4) in Dhaka, Bangladesh, to 6·6 per 100 person-years (4·3-9·9) in Kavrepalanchok, Nepal, and followed the same rank order as clinical incidence estimates.The approach described here has the potential to expand the geographical scope of typhoidal Salmonella surveillance and generate incidence estimates that are comparable across geographical regions and time.Bill & Melinda Gates Foundation.For the Nepali, Bengali and Urdu translations of the abstract see Supplementary Materials section.
View details for DOI 10.1016/S2666-5247(22)00114-8
View details for PubMedID 35750069
-
All-cause and cause-specific mortality during and following incarceration in Brazil: A retrospective cohort study.
PLoS medicine
Liu, Y. E., Lemos, E. F., Gonçalves, C. C., de Oliveira, R. D., Santos, A. d., do Prado Morais, A. O., Croda, M. G., de Lourdes Delgado Alves, M., Croda, J., Walter, K. S., Andrews, J. R.
2021; 18 (9): e1003789
Hide
More
Abstract
Mortality during and after incarceration is poorly understood in low- and middle-income countries (LMICs). The need to address this knowledge gap is especially urgent in South America, which has the fastest growing prison population in the world. In Brazil, insufficient data have precluded our understanding of all-cause and cause-specific mortality during and after incarceration.We linked incarceration and mortality databases for the Brazilian state of Mato Grosso do Sul to obtain a retrospective cohort of 114,751 individuals with recent incarceration. Between January 1, 2009 and December 31, 2018, we identified 3,127 deaths of individuals with recent incarceration (705 in detention and 2,422 following release). We analyzed age-standardized, all-cause, and cause-specific mortality rates among individuals detained in different facility types and following release, compared to non-incarcerated residents. We additionally modeled mortality rates over time during and after incarceration for all causes of death, violence, or suicide. Deaths in custody were 2.2 times the number reported by the national prison administration (n = 317). Incarcerated men and boys experienced elevated mortality, compared with the non-incarcerated population, due to increased risk of death from violence, suicide, and communicable diseases, with the highest standardized incidence rate ratio (IRR) in semi-open prisons (2.4; 95% confidence interval [CI]: 2.0 to 2.8), police stations (3.1; 95% CI: 2.5 to 3.9), and youth detention (8.1; 95% CI: 5.9 to 10.8). Incarcerated women experienced increased mortality from suicide (IRR = 6.0, 95% CI: 1.2 to 17.7) and communicable diseases (IRR = 2.5, 95% CI: 1.1 to 5.0). Following release from prison, mortality was markedly elevated for men (IRR = 3.0; 95% CI: 2.8 to 3.1) and women (IRR = 2.4; 95% CI: 2.1 to 2.9). The risk of violent death and suicide was highest immediately post-release and declined over time; however, all-cause mortality remained elevated 8 years post-release. The limitations of this study include inability to establish causality, uncertain reliability of data during incarceration, and underestimation of mortality rates due to imperfect database linkage.Incarcerated individuals in Brazil experienced increased mortality from violence, suicide, and communicable diseases. Mortality was heightened following release for all leading causes of death, with particularly high risk of early violent death and elevated all-cause mortality up to 8 years post-release. These disparities may have been underrecognized in Brazil due to underreporting and insufficient data.
View details for DOI 10.1371/journal.pmed.1003789
View details for PubMedID 34534214
The Blish Lab
Defining Natural Immunity in Viral Disease
The Blish laboratory is in the Department of Medicine, Division of Infectious Diseases and Geographic Medicine and in the interdisciplinary Stanford Immunology program. Our goal is to develop new methods to prevent and control infectious diseases through better understanding of human immunology. We have several major areas of ongoing investigation.
Publications
-
Comparative analysis of cell-cell communication at single-cell resolution.
Nature biotechnology
Wilk, A. J., Shalek, A. K., Holmes, S., Blish, C. A.
2023
Hide
More
Abstract
Inference of cell-cell communication from single-cell RNA sequencing data is a powerful technique to uncover intercellular communication pathways, yet existing methods perform this analysis at the level of the cell type or cluster, discarding single-cell-level information. Here we present Scriabin, a flexible and scalable framework for comparative analysis of cell-cell communication at single-cell resolution that is performed without cell aggregation or downsampling. We use multiple published atlas-scale datasets, genetic perturbation screens and direct experimental validation to show that Scriabin accurately recovers expected cell-cell communication edges and identifies communication networks that can be obscured by agglomerative methods. Additionally, we use spatial transcriptomic data to show that Scriabin can uncover spatial features of interaction from dissociated data alone. Finally, we demonstrate applications to longitudinal datasets to follow communication pathways operating between timepoints. Our approach represents a broadly applicable strategy to reveal the full structure of niche-phenotype relationships in health and disease.
View details for DOI 10.1038/s41587-023-01782-z
View details for PubMedID 37169965
View details for PubMedCentralID 8104132
-
SARS-CoV-2 escapes direct NK cell killing through Nsp1-mediated downregulation of ligands for NKG2D.
Cell reports
Lee, M. J., Leong, M. W., Rustagi, A., Beck, A., Zeng, L., Holmes, S., Qi, L. S., Blish, C. A.
2022: 111892
Hide
More
Abstract
Natural killer (NK) cells are cytotoxic effector cells that target and lyse virally infected cells; many viruses therefore encode mechanisms to escape such NK cell killing. Here, we interrogate the ability of SARS-CoV-2 to modulate NK cell recognition and lysis of infected cells. We find that NK cells exhibit poor cytotoxic responses against SARS-CoV-2-infected targets, preferentially killing uninfected bystander cells. We demonstrate that this escape is driven by downregulation of ligands for the activating receptor NKG2D (NKG2D-L). Indeed, early in viral infection, prior to NKG2D-L downregulation, NK cells are able to target and kill infected cells; however, this ability is lost as viral proteins are expressed. Finally, we find that SARS-CoV-2 non-structural protein 1 (Nsp1) mediates downregulation of NKG2D-L and that Nsp1 alone is sufficient to confer resistance to NK cell killing. Collectively, our work demonstrates that SARS-CoV-2 evades direct NK cell cytotoxicity and describes a mechanism by which this occurs.
View details for DOI 10.1016/j.celrep.2022.111892
View details for PubMedID 36543165
-
SARS-CoV-2 infection drives an inflammatory response in human adipose tissue through infection of adipocytes and macrophages.
Science translational medicine
Martínez-Colón, G. J., Ratnasiri, K., Chen, H., Jiang, S., Zanley, E., Rustagi, A., Verma, R., Chen, H., Andrews, J. R., Mertz, K. D., Tzankov, A., Azagury, D., Boyd, J., Nolan, G. P., Schürch, C. M., Matter, M. S., Blish, C. A., McLaughlin, T. L.
2022: eabm9151
Hide
More
Abstract
Obesity, characterized by chronic low-grade inflammation of the adipose tissue, is associated with adverse coronavirus disease 2019 (COVID-19) outcomes, yet the underlying mechanism is unknown. To explore whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of adipose tissue contributes to pathogenesis, we evaluated COVID-19 autopsy cases and deeply profiled the response of adipose tissue to SARS-CoV-2 infection in vitro. In COVID-19 autopsy cases, we identified SARS-CoV-2 RNA in adipocytes with an associated inflammatory infiltrate. We identified two distinct cellular targets of infection: adipocytes and a subset of inflammatory adipose tissue-resident macrophages. Mature adipocytes were permissive to SARS-CoV-2 infection; although macrophages were abortively infected, SARS-CoV-2 initiated inflammatory responses within both the infected macrophages and bystander preadipocytes. These data suggest that SARS-CoV-2 infection of adipose tissue could contribute to COVID-19 severity through replication of virus within adipocytes and through induction of local and systemic inflammation driven by infection of adipose tissue-resident macrophages.
View details for DOI 10.1126/scitranslmed.abm9151
View details for PubMedID 36137009
-
Multi-omic profiling reveals widespread dysregulation of innate immunity and hematopoiesis in COVID-19.
The Journal of experimental medicine
Wilk, A. J., Lee, M. J., Wei, B., Parks, B., Pi, R., Martinez-Colon, G. J., Ranganath, T., Zhao, N. Q., Taylor, S., Becker, W., Stanford COVID-19 Biobank, Jimenez-Morales, D., Blomkalns, A. L., O'Hara, R., Ashley, E. A., Nadeau, K. C., Yang, S., Holmes, S., Rabinovitch, M., Rogers, A. J., Greenleaf, W. J., Blish, C. A.
2021; 218 (8)
Hide
More
Abstract
Our understanding of protective versus pathological immune responses to SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), is limited by inadequate profiling of patients at the extremes of the disease severity spectrum. Here, we performed multi-omic single-cell immune profiling of 64 COVID-19 patients across the full range of disease severity, from outpatients with mild disease to fatal cases. Our transcriptomic, epigenomic, and proteomic analyses revealed widespread dysfunction of peripheral innate immunity in severe and fatal COVID-19, including prominent hyperactivation signatures in neutrophils and NK cells. We also identified chromatin accessibility changes at NF-kappaB binding sites within cytokine gene loci as a potential mechanism for the striking lack of pro-inflammatory cytokine production observed in monocytes in severe and fatal COVID-19. We further demonstrated that emergency myelopoiesis is a prominent feature of fatal COVID-19. Collectively, our results reveal disease severity-associated immune phenotypes in COVID-19 and identify pathogenesis-associated pathways that are potential targets for therapeutic intervention.
View details for DOI 10.1084/jem.20210582
View details for PubMedID 34128959
-
A single-cell atlas of the peripheral immune response in patients with severe COVID-19.
Nature medicine
Wilk, A. J., Rustagi, A., Zhao, N. Q., Roque, J., Martinez-Colon, G. J., McKechnie, J. L., Ivison, G. T., Ranganath, T., Vergara, R., Hollis, T., Simpson, L. J., Grant, P., Subramanian, A., Rogers, A. J., Blish, C. A.
2020
Hide
More
Abstract
There is an urgent need to better understand the pathophysiology of Coronavirus disease 2019 (COVID-19), the global pandemic caused by SARS-CoV-2, which has infected more than three million people worldwide1. Approximately 20% of patients with COVID-19 develop severe disease and 5% of patients require intensive care2. Severe disease has been associated with changes in peripheral immune activity, including increased levels of pro-inflammatory cytokines3,4 that may be produced by a subset of inflammatory monocytes5,6, lymphopenia7,8 and T cell exhaustion9,10. To elucidate pathways in peripheral immune cells that might lead to immunopathology or protective immunity in severe COVID-19, we applied single-cell RNA sequencing (scRNA-seq) to profile peripheral blood mononuclear cells (PBMCs) from seven patients hospitalized for COVID-19, four of whom had acute respiratory distress syndrome, and six healthy controls. We identify reconfiguration of peripheral immune cell phenotype in COVID-19, including a heterogeneous interferon-stimulated gene signature, HLA class II downregulation and a developing neutrophil population that appears closely related to plasmablasts appearing in patients with acute respiratory failure requiring mechanical ventilation. Importantly, we found that peripheral monocytes and lymphocytes do not express substantial amounts of pro-inflammatory cytokines. Collectively, we provide a cell atlas of the peripheral immune response to severe COVID-19.
View details for DOI 10.1038/s41591-020-0944-y
View details for PubMedID 32514174
The Bollyky Lab
Immune Responses in Injured and Infected Tissues
Our lab studies how immune responses are regulated within injured and infected tissues. We work at the intersection of immunology, structural biology, bioengineering, and microbiology. Our goals are to understand the factors that drive chronic inflammation and to develop novel therapeutics to promote wound healing and immune tolerance.
Publications
-
Phage diversity in cell-free DNA identifies bacterial pathogens in human sepsis cases.
Nature microbiology
Haddock, N. L., Barkal, L. J., Ram-Mohan, N., Kaber, G., Chiu, C. Y., Bhatt, A. S., Yang, S., Bollyky, P. L.
2023
Hide
More
Abstract
Bacteriophages, viruses that infect bacteria, have great specificity for their bacterial hosts at the strain and species level. However, the relationship between the phageome and associated bacterial population dynamics is unclear. Here we generated a computational pipeline to identify sequences associated with bacteriophages and their bacterial hosts in cell-free DNA from plasma samples. Analysis of two independent cohorts, including a Stanford Cohort of 61 septic patients and 10 controls and the SeqStudy cohort of 224 septic patients and 167 controls, reveals a circulating phageome in the plasma of all sampled individuals. Moreover, infection is associated with overrepresentation of pathogen-specific phages, allowing for identification of bacterial pathogens. We find that information on phage diversity enables identification of the bacteria that produced these phages, including pathovariant strains of Escherichia coli. Phage sequences can likewise be used to distinguish between closely related bacterial species such as Staphylococcus aureus, a frequent pathogen, and coagulase-negative Staphylococcus, a frequent contaminant. Phage cell-free DNA may have utility in studying bacterial infections.
View details for DOI 10.1038/s41564-023-01406-x
View details for PubMedID 37308590
View details for PubMedCentralID 5594678
-
Filamentous bacteriophage delays healing of Pseudomonas-infected wounds.
Cell reports. Medicine
Bach, M. S., de Vries, C. R., Khosravi, A., Sweere, J. M., Popescu, M. C., Chen, Q., Demirdjian, S., Hargil, A., Van Belleghem, J. D., Kaber, G., Hajfathalian, M., Burgener, E. B., Liu, D., Tran, Q., Dharmaraj, T., Birukova, M., Sunkari, V., Balaji, S., Ghosh, N., Mathew-Steiner, S. S., El Masry, M. S., Keswani, S. G., Banaei, N., Nedelec, L., Sen, C. K., Chandra, V., Secor, P. R., Suh, G. A., Bollyky, P. L.
2022; 3 (6): 100656
Hide
More
Abstract
Chronic wounds infected by Pseudomonas aeruginosa (Pa) are characterized by disease progression and increased mortality. We reveal Pf, a bacteriophage produced by Pa that delays healing of chronically infected wounds in human subjects and animal models of disease. Interestingly, impairment of wound closure by Pf is independent of its effects on Pa pathogenesis. Rather, Pf impedes keratinocyte migration, which is essential for wound healing, through direct inhibition of CXCL1 signaling. In support of these findings, a prospective cohort study of 36 human patients with chronic Pa wound infections reveals that wounds infected with Pf-positive strains of Pa are more likely to progress in size compared with wounds infected with Pf-negative strains. Together, these data implicate Pf phage in the delayed wound healing associated with Pa infection through direct manipulation of mammalian cells. These findings suggest Pf may have potential as a biomarker and therapeutic target in chronic wounds.
View details for DOI 10.1016/j.xcrm.2022.100656
View details for PubMedID 35732145
-
Phage Therapy for Limb-threatening Prosthetic Knee Klebsiella pneumoniae Infection: Case Report and In Vitro Characterization of Anti-biofilm Activity.
Clinical infectious diseases : an official publication of the Infectious Diseases Society of America
Cano, E. J., Caflisch, K. M., Bollyky, P. L., Van Belleghem, J. D., Patel, R. n., Fackler, J. n., Brownstein, M. J., Horne, B. n., Biswas, B. n., Henry, M. n., Malagon, F. n., Lewallen, D. G., Suh, G. A.
2020
Hide
More
Abstract
Prosthetic joint infection (PJI) is a potentially limb-threatening complication of total knee arthroplasty. Phage therapy is a promising strategy to manage such infections including those involving antibiotic-resistant microbes, and to target microbial biofilms. Experience with phage therapy for infections associated with retained hardware is limited. A 62-year-old diabetic man with a history of right total knee arthroplasty 11 years prior who had suffered multiple episodes of prosthetic knee infection despite numerous surgeries and prolonged courses of antibiotics, with progressive clinical worsening and development of severe allergies to antibiotics, had been offered limb amputation for persistent right prosthetic knee infection due to Klebsiella pneumoniae complex. Intravenous phage therapy was initiated as a limb-salvaging intervention.The patient received 40 intravenous doses of a single phage (KpJH46Φ2) targeting his bacterial isolate, alongside continued minocycline (which he had been receiving when he developed increasing pain, swelling, and erythema prior to initiation of phage therapy). Serial cytokine and biomarker measurements were performed before, during, and after treatment. The in vitro anti-biofilm activity of KpJH46Φ2, minocycline and the combination thereof was evaluated against a preformed biofilm of the patient's isolate and determined by safranin staining.Phage therapy resulted in resolution of local symptoms and signs of infection and recovery of function. The patient did not experience treatment-related adverse effects and remained asymptomatic 34 weeks after completing treatment while still receiving minocycline. A trend in biofilm biomass reduction was noted 22 hours after exposure to KpJH46Φ2 (P = .063). The addition of phage was associated with a satisfactory outcome in this case of intractable biofilm-associated prosthetic knee infection. Pending further studies to assess its efficacy and safety, phage therapy holds promise for treatment of device-associated infections.
View details for DOI 10.1093/cid/ciaa705
View details for PubMedID 32699879
-
Filamentous bacteriophages are associated with chronic Pseudomonas lung infections and antibiotic resistance in cystic fibrosis
SCIENCE TRANSLATIONAL MEDICINE
Burgener, E. B., Sweere, J. M., Bach, M. S., Secor, P. R., Haddock, N., Jennings, L. K., Marvig, R. L., Johansen, H., Rossi, E., Cao, X., Tian, L., Nedelec, L., Molin, S., Bollyky, P. L., Milla, C. E.
2019; 11 (488)
Hide
More
View details for DOI 10.1126/scitranslmed.aau9748
View details for Web of Science ID 000465116400003
-
Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection.
Science (New York, N.Y.)
Sweere, J. M., Van Belleghem, J. D., Ishak, H. n., Bach, M. S., Popescu, M. n., Sunkari, V. n., Kaber, G. n., Manasherob, R. n., Suh, G. A., Cao, X. n., de Vries, C. R., Lam, D. N., Marshall, P. L., Birukova, M. n., Katznelson, E. n., Lazzareschi, D. V., Balaji, S. n., Keswani, S. G., Hawn, T. R., Secor, P. R., Bollyky, P. L.
2019; 363 (6434)
Hide
More
Abstract
Bacteriophage are abundant at sites of bacterial infection, but their effects on mammalian hosts are unclear. We have identified pathogenic roles for filamentous Pf bacteriophage produced by Pseudomonas aeruginosa (Pa) in suppression of immunity against bacterial infection. Pf promote Pa wound infection in mice and are associated with chronic human Pa wound infections. Murine and human leukocytes endocytose Pf, and internalization of this single-stranded DNA virus results in phage RNA production. This triggers Toll-like receptor 3 (TLR3)- and TIR domain-containing adapter-inducing interferon-β (TRIF)-dependent type I interferon production, inhibition of tumor necrosis factor (TNF), and the suppression of phagocytosis. Conversely, immunization of mice against Pf prevents Pa wound infection. Thus, Pf triggers maladaptive innate viral pattern-recognition responses, which impair bacterial clearance. Vaccination against phage virions represents a potential strategy to prevent bacterial infection.
View details for PubMedID 30923196
The Einav Lab
Understanding Virus-Host Protein Interactions
The goals of our lab are to better understand virus-host protein interactions, identify host proteins or pathways required by multiple viruses, and translate this knowledge into the development of novel, broad-spectrum, host-centered antiviral approaches with a high genetic barrier for resistance.
Publications
-
Anticancer pan-ErbB inhibitors reduce inflammation and tissue injury and exert broad-spectrum antiviral effects.
The Journal of clinical investigation
Saul, S., Karim, M., Ghita, L., Huang, P. T., Chiu, W., Durán, V., Lo, C. W., Kumar, S., Bhalla, N., Leyssen, P., Alem, F., Boghdeh, N. A., Tran, D. H., Cohen, C. A., Brown, J. A., Huie, K. E., Tindle, C., Sibai, M., Ye, C., Khalil, A. M., Chiem, K., Martinez-Sobrido, L., Dye, J. M., Pinsky, B. A., Ghosh, P., Das, S., Solow-Cordero, D. E., Jin, J., Wikswo, J. P., Jochmans, D., Neyts, J., De Jonghe, S., Narayanan, A., Einav, S.
2023
Hide
More
Abstract
Targeting host factors exploited by multiple viruses could offer broad-spectrum solutions for pandemic preparedness. Seventeen candidates targeting diverse functions emerged in a screen of 4,413 compounds for SARS-CoV-2 inhibitors. We demonstrated that lapatinib and other approved inhibitors of the ErbB family receptor tyrosine kinases suppress replication of SARS-CoV-2, Venezuelan equine encephalitis virus (VEEV), and other emerging viruses with a high barrier to resistance. Lapatinib suppressed SARS-CoV-2 entry and later stages of the viral life cycle and showed synergistic effect with the direct-acting antiviral nirmatrelvir. We discovered that ErbB1, 2 and 4 bind SARS-CoV-2 S1 protein and regulate viral and ACE2 internalization, and they are required for VEEV infection. In human lung organoids, lapatinib protected from SARS-CoV-2-induced activation of ErbB-regulated pathways implicated in non-infectious lung injury, pro-inflammatory cytokine production, and epithelial barrier injury. Lapatinib suppressed VEEV replication, cytokine production and disruption of the blood-brain barrier integrity in microfluidic-based human neurovascular units, and reduced mortality in a lethal infection murine model. We validated lapatinib-mediated inhibition of ErbB activity as an important mechanism of antiviral action. These findings reveal regulation of viral replication, inflammation, and tissue injury via ErbBs and establish a proof-of-principle for a repurposed, ErbB-targeted approach to combat emerging viruses.
View details for DOI 10.1172/JCI169510
View details for PubMedID 37581931
-
Preparing for the next viral threat with broad-spectrum antivirals.
The Journal of clinical investigation
Karim, M., Lo, C. W., Einav, S.
2023; 133 (11)
Hide
More
Abstract
There is a large global unmet need for the development of countermeasures to combat hundreds of viruses known to cause human disease and for the establishment of a therapeutic portfolio for future pandemic preparedness. Most approved antiviral therapeutics target proteins encoded by a single virus, providing a narrow spectrum of coverage. This, combined with the slow pace and high cost of drug development, limits the scalability of this direct-acting antiviral (DAA) approach. Here, we summarize progress and challenges in the development of broad-spectrum antivirals that target either viral elements (proteins, genome structures, and lipid envelopes) or cellular proviral factors co-opted by multiple viruses via newly discovered compounds or repurposing of approved drugs. These strategies offer new means for developing therapeutics against both existing and emerging viral threats that complement DAAs.
View details for DOI 10.1172/JCI170236
View details for PubMedID 37259914
-
Magnitude and kinetics of the human immune cell response associated with severe dengue progression by single-cell proteomics.
Science advances
Robinson, M. L., Glass, D. R., Duran, V., Agudelo Rojas, O. L., Sanz, A. M., Consuegra, M., Sahoo, M. K., Hartmann, F. J., Bosse, M., Gelvez, R. M., Bueno, N., Pinsky, B. A., Montoya, J. G., Maecker, H., Estupiñan Cardenas, M. I., Villar Centeno, L. A., Garrido, E. M., Rosso, F., Bendall, S. C., Einav, S.
2023; 9 (12): eade7702
Hide
More
Abstract
Approximately 5 million dengue virus-infected patients progress to a potentially life-threatening severe dengue (SD) infection annually. To identify the immune features and temporal dynamics underlying SD progression, we performed deep immune profiling by mass cytometry of PBMCs collected longitudinally from SD progressors (SDp) and uncomplicated dengue (D) patients. While D is characterized by early activation of innate immune responses, in SDp there is rapid expansion and activation of IgG-secreting plasma cells and memory and regulatory T cells. Concurrently, SDp, particularly children, demonstrate increased proinflammatory NK cells, inadequate expansion of CD16+ monocytes, and high expression of the FcγR CD64 on myeloid cells, yet a signature of diminished antigen presentation. Syndrome-specific determinants include suppressed dendritic cell abundance in shock/hemorrhage versus enriched plasma cell expansion in organ impairment. This study reveals uncoordinated immune responses in SDp and provides insights into SD pathogenesis in humans with potential implications for prediction and treatment.
View details for DOI 10.1126/sciadv.ade7702
View details for PubMedID 36961888
-
Nonlytic cellular release of hepatitis A virus requires dual capsid recruitment of the ESCRT-associated Bro1 domain proteins HD-PTP and ALIX.
PLoS pathogens
Shirasaki, T., Feng, H., Duyvesteyn, H. M., Fusco, W. G., McKnight, K. L., Xie, L., Boyce, M., Kumar, S., Barouch-Bentov, R., Gonzalez-Lopez, O., McNamara, R., Wang, L., Hertel-Wulff, A., Chen, X., Einav, S., Duncan, J. A., Kapustina, M., Fry, E. E., Stuart, D. I., Lemon, S. M.
2022; 18 (8): e1010543
Hide
More
Abstract
Although picornaviruses are conventionally considered 'nonenveloped', members of multiple picornaviral genera are released nonlytically from infected cells in extracellular vesicles. The mechanisms underlying this process are poorly understood. Here, we describe interactions of the hepatitis A virus (HAV) capsid with components of host endosomal sorting complexes required for transport (ESCRT) that play an essential role in release. We show release of quasi-enveloped virus (eHAV) in exosome-like vesicles requires a conserved export signal located within the 8 kDa C-terminal VP1 pX extension that functions in a manner analogous to late domains of canonical enveloped viruses. Fusing pX to a self-assembling engineered protein nanocage (EPN-pX) resulted in its ESCRT-dependent release in extracellular vesicles. Mutational analysis identified a 24 amino acid peptide sequence located within the center of pX that was both necessary and sufficient for nanocage release. Deleting a YxxL motif within this sequence ablated eHAV release, resulting in virus accumulating intracellularly. The pX export signal is conserved in non-human hepatoviruses from a wide range of mammalian species, and functional in pX sequences from bat hepatoviruses when fused to the nanocage protein, suggesting these viruses are released as quasi-enveloped virions. Quantitative proteomics identified multiple ESCRT-related proteins associating with EPN-pX, including ALG2-interacting protein X (ALIX), and its paralog, tyrosine-protein phosphatase non-receptor type 23 (HD-PTP), a second Bro1 domain protein linked to sorting of ubiquitylated cargo into multivesicular endosomes. RNAi-mediated depletion of either Bro1 domain protein impeded eHAV release. Super-resolution fluorescence microscopy demonstrated colocalization of viral capsids with endogenous ALIX and HD-PTP. Co-immunoprecipitation assays using biotin-tagged peptides and recombinant proteins revealed pX interacts directly through the export signal with N-terminal Bro1 domains of both HD-PTP and ALIX. Our study identifies an exceptionally potent viral export signal mediating extracellular release of virus-sized protein assemblies and shows release requires non-redundant activities of both HD-PTP and ALIX.
View details for DOI 10.1371/journal.ppat.1010543
View details for PubMedID 35969644
-
Numb-associated kinases are required for SARS-CoV-2 infection and are cellular targets for antiviral strategies.
Antiviral research
Karim, M., Saul, S., Ghita, L., Sahoo, M. K., Ye, C., Bhalla, N., Lo, C. W., Jin, J., Park, J., Martinez-Gualda, B., East, M. P., Johnson, G. L., Pinsky, B. A., Martinez-Sobrido, L., Asquith, C. R., Narayanan, A., De Jonghe, S., Einav, S.
2022: 105367
Hide
More
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to pose serious threats to global health. We previously reported that AAK1, BIKE and GAK, members of the Numb-associated kinase family, control intracellular trafficking of multiple RNA viruses during viral entry and assembly/egress. Here, using both genetic and pharmacological approaches, we probe the functional relevance of NAKs for SARS-CoV-2 infection. siRNA-mediated depletion of AAK1, BIKE, GAK, and STK16, the fourth member of the NAK family, suppressed SARS-CoV-2 infection in human lung epithelial cells. Both known and novel small molecules with potent AAK1/BIKE, GAK or STK16 activity suppressed SARS-CoV-2 infection. Moreover, combination treatment with the approved anti-cancer drugs, sunitinib and erlotinib, with potent anti-AAK1/BIKE and GAK activity, respectively, demonstrated synergistic effect against SARS-CoV-2 infection in vitro. Time-of-addition experiments revealed that pharmacological inhibition of AAK1 and BIKE suppressed viral entry as well as late stages of the SARS-CoV-2 life cycle. Lastly, suppression of NAKs expression by siRNAs inhibited entry of both wild type and SARS-CoV-2 pseudovirus. These findings provide insight into the roles of NAKs in SARS-CoV-2 infection and establish a proof-of-principle that pharmacological inhibition of NAKs can be potentially used as a host-targeted approach to treat SARS-CoV-2 with potential implications to other coronaviruses.
View details for DOI 10.1016/j.antiviral.2022.105367
View details for PubMedID 35738348
Jagannathan Lab
Translational Immunology Focused on Malaria-Specific Immune Responses
The goals of this laboratory are to further our understanding of the correlates and mechanisms of clinical immunity to malaria through field-based studies, and to better understand the immunologic consequences of malaria control interventions.
These studies bridge immune profiling techniques including multiparameter flow cytometry, transcriptomics, epigenetics, and multiplex antibody profiling to epidemiologic studies of antimalarial immunity in children.
Publications
-
Malaria-specific Type 1 regulatory T cells are more abundant in first pregnancies and associated with placental malaria.
EBioMedicine
Kirosingh, A. S., Delmastro, A., Kakuru, A., van der Ploeg, K., Bhattacharya, S., Press, K. D., Ty, M., Parte, L., Kizza, J., Muhindo, M., Devachanne, S., Gamain, B., Nankya, F., Musinguzi, K., Rosenthal, P. J., Feeney, M. E., Kamya, M., Dorsey, G., Jagannathan, P.
2023; 95: 104772
Hide
More
Abstract
Malaria in pregnancy (MIP) causes higher morbidity in primigravid compared to multigravid women; however, the correlates and mechanisms underlying this gravidity-dependent protection remain incompletely understood. We aimed to compare the cellular immune response between primigravid and multigravid women living in a malaria-endemic region and assess for correlates of protection against MIP.We characterised the second trimester cellular immune response among 203 primigravid and multigravid pregnant women enrolled in two clinical trials of chemoprevention in eastern Uganda, utilizing RNA sequencing, flow cytometry, and functional assays. We compared responses across gravidity and determined associations with parasitaemia during pregnancy and placental malaria.Using whole blood RNA sequencing, no significant differentially expressed genes were identified between primigravid (n = 12) and multigravid (n = 11) women overall (log 2(FC) > 2, FDR < 0.1). However, primigravid (n = 49) women had higher percentages of malaria-specific, non-naïve CD4+ T cells that co-expressed IL-10 and IFNγ compared with multigravid (n = 85) women (p = 0.000023), and higher percentages of these CD4+ T cells were associated with greater risks of parasitaemia in pregnancy (Rs = 0.49, p = 0.001) and placental malaria (p = 0.0073). These IL-10 and IFNγ co-producing CD4+ T cells had a genomic signature of Tr1 cells, including expression of transcription factors cMAF and BATF and cell surface makers CTLA4 and LAG-3.Malaria-specific Tr1 cells were highly prevalent in primigravid Ugandan women, and their presence correlated with a higher risk of malaria in pregnancy. Understanding whether suppression of Tr1 cells plays a role in naturally acquired gravidity-dependent immunity may aid the development of new vaccines or treatments for MIP.This work was funded by NIH (PO1 HD059454, U01 AI141308, U19 AI089674, U01 AI155325, U01 AI150741), the March of Dimes (Basil O'Connor award), and the Bill and Melinda Gates Foundation (OPP 1113682).
View details for DOI 10.1016/j.ebiom.2023.104772
View details for PubMedID 37634385
-
Malaria-driven expansion of adaptive-like functional CD56-negative NK cells correlates with clinical immunity to malaria.
Science translational medicine
Ty, M., Sun, S., Callaway, P. C., Rek, J., Press, K. D., van der Ploeg, K., Nideffer, J., Hu, Z., Klemm, S., Greenleaf, W., Donato, M., Tukwasibwe, S., Arinaitwe, E., Nankya, F., Musinguzi, K., Andrew, D., de la Parte, L., Mori, D. M., Lewis, S. N., Takahashi, S., Rodriguez-Barraquer, I., Greenhouse, B., Blish, C., Utz, P. J., Khatri, P., Dorsey, G., Kamya, M., Boyle, M., Feeney, M., Ssewanyana, I., Jagannathan, P.
2023; 15 (680): eadd9012
Hide
More
Abstract
Natural killer (NK) cells likely play an important role in immunity to malaria, but the effect of repeated malaria on NK cell responses remains unclear. Here, we comprehensively profiled the NK cell response in a cohort of 264 Ugandan children. Repeated malaria exposure was associated with expansion of an atypical, CD56neg population of NK cells that differed transcriptionally, epigenetically, and phenotypically from CD56dim NK cells, including decreased expression of PLZF and the Fc receptor γ-chain, increased histone methylation, and increased protein expression of LAG-3, KIR, and LILRB1. CD56neg NK cells were highly functional and displayed greater antibody-dependent cellular cytotoxicity than CD56dim NK cells. Higher frequencies of CD56neg NK cells were associated with protection against symptomatic malaria and high parasite densities. After marked reductions in malaria transmission, frequencies of these cells rapidly declined, suggesting that continuous exposure to Plasmodium falciparum is required to maintain this modified, adaptive-like NK cell subset.
View details for DOI 10.1126/scitranslmed.add9012
View details for PubMedID 36696483
-
Early immune markers of clinical, virological, and immunological outcomes in patients with COVID-19: a multi-omics study.
eLife
Hu, Z., van der Ploeg, K., Chakraborty, S., Arunachalam, P. S., Mori, D. A., Jacobson, K. B., Bonilla, H., Parsonnet, J., Andrews, J. R., Holubar, M., Subramanian, A., Khosla, C., Maldonado, Y., Hedlin, H., de la Parte, L., Press, K., Ty, M., Tan, G. S., Blish, C., Takahashi, S., Rodriguez-Barraquer, I., Greenhouse, B., Butte, A. J., Singh, U., Pulendran, B., Wang, T. T., Jagannathan, P.
2022; 11
Hide
More
Abstract
The great majority of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) infections are mild and uncomplicated, but some individuals with initially mild COVID-19 progressively develop more severe symptoms. Furthermore, there is substantial heterogeneity in SARS-CoV-2-specific memory immune responses following infection. There remains a critical need to identify host immune biomarkers predictive of clinical and immunological outcomes in SARS-CoV-2-infected patients.Leveraging longitudinal samples and data from a clinical trial (N=108) in SARS-CoV-2-infected outpatients, we used host proteomics and transcriptomics to characterize the trajectory of the immune response in COVID-19 patients. We characterized the association between early immune markers and subsequent disease progression, control of viral shedding, and SARS-CoV-2-specific T cell and antibody responses measured up to 7 months after enrollment. We further compared associations between early immune markers and subsequent T cell and antibody responses following natural infection with those following mRNA vaccination. We developed machine-learning models to predict patient outcomes and validated the predictive model using data from 54 individuals enrolled in an independent clinical trial.We identify early immune signatures, including plasma RIG-I levels, early IFN signaling, and related cytokines (CXCL10, MCP1, MCP-2, and MCP-3) associated with subsequent disease progression, control of viral shedding, and the SARS-CoV-2-specific T cell and antibody response measured up to 7 months after enrollment. We found that several biomarkers for immunological outcomes are shared between individuals receiving BNT162b2 (Pfizer-BioNTech) vaccine and COVID-19 patients. Finally, we demonstrate that machine-learning models using 2-7 plasma protein markers measured early within the course of infection are able to accurately predict disease progression, T cell memory, and the antibody response post-infection in a second, independent dataset.Early immune signatures following infection can accurately predict clinical and immunological outcomes in outpatients with COVID-19 using validated machine-learning models.Support for the study was provided from National Institute of Health/National Institute of Allergy and Infectious Diseases (NIH/NIAID) (U01 AI150741-01S1 and T32-AI052073), the Stanford's Innovative Medicines Accelerator, National Institutes of Health/National Institute on Drug Abuse (NIH/NIDA) DP1DA046089, and anonymous donors to Stanford University. Peginterferon lambda provided by Eiger BioPharmaceuticals.
View details for DOI 10.7554/eLife.77943
View details for PubMedID 36239699
-
Age-dependent changes in circulating Tfh cells influence development of functional malaria antibodies in children.
Nature communications
Chan, J., Loughland, J. R., de la Parte, L., Okano, S., Ssewanyana, I., Nalubega, M., Nankya, F., Musinguzi, K., Rek, J., Arinaitwe, E., Tipping, P., Bourke, P., Andrew, D., Dooley, N., SheelaNair, A., Wines, B. D., Hogarth, P. M., Beeson, J. G., Greenhouse, B., Dorsey, G., Kamya, M., Hartel, G., Minigo, G., Feeney, M., Jagannathan, P., Boyle, M. J.
2022; 13 (1): 4159
Hide
More
Abstract
T-follicular helper (Tfh) cells are key drivers of antibodies that protect from malaria. However, little is known regarding the host and parasite factors that influence Tfh and functional antibody development. Here, we use samples from a large cross-sectional study of children residing in an area of high malaria transmission in Uganda to characterize Tfh cells and functional antibodies to multiple parasites stages. We identify a dramatic re-distribution of the Tfh cell compartment with age that is independent of malaria exposure, with Th2-Tfh cells predominating in early childhood, while Th1-Tfh cell gradually increase to adult levels over the first decade of life. Functional antibody acquisition is age-dependent and hierarchical acquired based on parasite stage, with merozoite responses followed by sporozoite and gametocyte antibodies. Antibodies are boosted in children with current infection, and are higher in females. The children with the very highest antibody levels have increased Tfh cell activation and proliferation, consistent with a key role of Tfh cells in antibody development. Together, these data reveal a complex relationship between the circulating Tfh compartment, antibody development and protection from malaria.
View details for DOI 10.1038/s41467-022-31880-6
View details for PubMedID 35851033
-
Malaria in 2022: Increasing challenges, cautious optimism.
Nature communications
Jagannathan, P., Kakuru, A.
2022; 13 (1): 2678
Hide
More
View details for DOI 10.1038/s41467-022-30133-w
View details for PubMedID 35562368
The Parsonnet Lab
Investigating Chronic Disease-Infection Links
The laboratory's primary research interest is investigating the role of infectious agents in chronic diseases. Much of this work has revolved around Helicobacter pylori infection as a cause of adenocarcinomas and lymphomas of the stomach.
Publications
-
Defining Usual Oral Temperature Ranges in Outpatients Using an Unsupervised Learning Algorithm.
JAMA internal medicine
Ley, C., Heath, F., Hastie, T., Gao, Z., Protsiv, M., Parsonnet, J.
2023
Hide
More
Abstract
Although oral temperature is commonly assessed in medical examinations, the range of usual or "normal" temperature is poorly defined.To determine normal oral temperature ranges by age, sex, height, weight, and time of day.This cross-sectional study used clinical visit information from the divisions of Internal Medicine and Family Medicine in a single large medical care system. All adult outpatient encounters that included temperature measurements from April 28, 2008, through June 4, 2017, were eligible for inclusion. The LIMIT (Laboratory Information Mining for Individualized Thresholds) filtering algorithm was applied to iteratively remove encounters with primary diagnoses overrepresented in the tails of the temperature distribution, leaving only those diagnoses unrelated to temperature. Mixed-effects modeling was applied to the remaining temperature measurements to identify independent factors associated with normal oral temperature and to generate individualized normal temperature ranges. Data were analyzed from July 5, 2017, to June 23, 2023.Primary diagnoses and medications, age, sex, height, weight, time of day, and month, abstracted from each outpatient encounter.Normal temperature ranges by age, sex, height, weight, and time of day.Of 618 306 patient encounters, 35.92% were removed by LIMIT because they included diagnoses or medications that fell disproportionately in the tails of the temperature distribution. The encounters removed due to overrepresentation in the upper tail were primarily linked to infectious diseases (76.81% of all removed encounters); type 2 diabetes was the only diagnosis removed for overrepresentation in the lower tail (15.71% of all removed encounters). The 396 195 encounters included in the analysis set consisted of 126 705 patients (57.35% women; mean [SD] age, 52.7 [15.9] years). Prior to running LIMIT, the mean (SD) overall oral temperature was 36.71 °C (0.43 °C); following LIMIT, the mean (SD) temperature was 36.64 °C (0.35 °C). Using mixed-effects modeling, age, sex, height, weight, and time of day accounted for 6.86% (overall) and up to 25.52% (per patient) of the observed variability in temperature. Mean normal oral temperature did not reach 37 °C for any subgroup; the upper 99th percentile ranged from 36.81 °C (a tall man with underweight aged 80 years at 8:00 am) to 37.88 °C (a short woman with obesity aged 20 years at 2:00 pm).The findings of this cross-sectional study suggest that normal oral temperature varies in an expected manner based on sex, age, height, weight, and time of day, allowing individualized normal temperature ranges to be established. The clinical significance of a value outside of the usual range is an area for future study.
View details for DOI 10.1001/jamainternmed.2023.4291
View details for PubMedID 37669046
-
Use of Wastewater Metrics to Track COVID-19 in the US.
JAMA network open
Varkila, M. R., Montez-Rath, M. E., Salomon, J. A., Yu, X., Block, G. A., Owens, D. K., Chertow, G. M., Parsonnet, J., Anand, S.
2023; 6 (7): e2325591
Hide
More
Abstract
Importance: Widespread use of at-home COVID-19 tests hampers determination of community COVID-19 incidence.Objective: To examine the association of county-level wastewater metrics with high case and hospitalization rates nationwide both before and after widespread use of at-home tests.Design, Setting, and Participants: This observational cohort study with a time series analysis was conducted from January to September 2022 in 268 US counties in 22 states participating in the US Centers for Disease Control and Prevention's National Wastewater Surveillance System. Participants included the populations of those US counties.Exposures: County level of circulating SARS-CoV-2 as determined by metrics based on viral wastewater concentration relative to the county maximum (ie, wastewater percentile) and 15-day percentage change in SARS-CoV-2 (ie, percentage change).Main Outcomes and Measures: High county incidence of COVID-19 as evidenced by dichotomized reported cases (current cases ≥200 per 100 000 population) and hospitalization (≥10 per 100 000 population lagged by 2 weeks) rates, stratified by calendar quarter.Results: In the first quarter of 2022, use of the wastewater percentile detected high reported case (area under the curve [AUC], 0.95; 95% CI, 0.94-0.96) and hospitalization (AUC, 0.86; 95% CI, 0.84-0.88) rates. The percentage change metric performed poorly, with AUCs ranging from 0.51 (95% CI, 0.50-0.53) to 0.57 (95% CI, 0.55-0.59) for reported new cases, and from 0.50 (95% CI, 0.48-0.52) to 0.55 (95% CI, 0.53-0.57) for hospitalizations across the first 3 quarters of 2022. The Youden index for detecting high case rates was wastewater percentile of 51% (sensitivity, 0.82; 95% CI, 0.80-0.84; specificity, 0.93; 95% CI, 0.92-0.95). A model inclusive of both metrics performed no better than using wastewater percentile alone. The performance of wastewater percentile declined over time for cases in the second quarter (AUC, 0.84; 95% CI, 0.82-0.86) and third quarter (AUC, 0.72; 95% CI, 0.70-0.75) of 2022.Conclusions and Relevance: In this study, nationwide, county wastewater levels relative to the county maximum were associated with high COVID-19 case and hospitalization rates in the first quarter of 2022, but there was increasing dissociation between wastewater and clinical metrics in subsequent quarters, which may reflect increasing underreporting of cases, reduced testing, and possibly lower virulence of infection due to vaccines and treatments. This study offers a strategy to operationalize county wastewater percentile to improve the accurate assessment of community SARS-CoV-2 infection prevalence when reliability of conventional surveillance data is declining.
View details for DOI 10.1001/jamanetworkopen.2023.25591
View details for PubMedID 37494040
-
Longitudinal comparison of the developing gut virome in infants and their mothers.
Cell host & microbe
Walters, W. A., Granados, A. C., Ley, C., Federman, S., Stryke, D., Santos, Y., Haggerty, T., Sotomayor-Gonzalez, A., Servellita, V., Ley, R. E., Parsonnet, J., Chiu, C. Y.
2023; 31 (2): 187
Hide
More
Abstract
The human gut virome and its early life development are poorly understood. Prior studies have captured single-point assessments with the evolution of the infant virome remaining largely unexplored. We performed viral metagenomic sequencing on stool samples collected longitudinally from a cohort of 53 infants from age 2weeks to 3 years (80.7 billion reads), and from their mothers (9.8 billion reads) to examine and compare viromes. The asymptomatic infant virome consisted of bacteriophages, nonhuman dietary/environmental viruses, and human-host viruses, predominantly picornaviruses. In contrast, human-host viruses were largely absent from the maternal virome. Previously undescribed, sequence-divergent vertebrate viruses were detected in the maternal but not infant virome. As infants aged, the phage component evolved to resemble the maternal virome, but by age 3, the human-host component remained dissimilar from the maternal virome. Thus, early life virome development is determined predominantly by dietary, infectious, and environmental factors rather than direct maternal acquisition.
View details for DOI 10.1016/j.chom.2023.01.003
View details for PubMedID 36758519
-
SARS-CoV-2 Vaccine Antibody Response and Breakthrough Infection in Patients Receiving Dialysis.
Annals of internal medicine
Anand, S., Montez-Rath, M. E., Han, J., Garcia, P., Cadden, L., Hunsader, P., Morgan, C., Kerschmann, R., Beyer, P., Dittrich, M., Block, G. A., Chertow, G. M., Parsonnet, J.
1800
Hide
More
Abstract
BACKGROUND: Whether breakthrough SARS-CoV-2 infections after vaccination are related to the level of postvaccine circulating antibody is unclear.OBJECTIVE: To determine longitudinal antibody-based response and risk for breakthrough infection after SARS-CoV-2 vaccination.DESIGN: Prospective study.SETTING: Nationwide sample from dialysis facilities.PATIENTS: 4791 patients receiving dialysis.MEASUREMENTS: Remainder plasma from a laboratory processing routine monthly tests was used to measure qualitative and semiquantitative antibodies to the receptor-binding domain (RBD) of SARS-CoV-2. To evaluate whether peak or prebreakthrough RBD values were associated with breakthrough infection, a nested case-control analysis matched each breakthrough case patient to 5 control patients by age, sex, and vaccination month and adjusted for diabetes status and region of residence.RESULTS: Of the 4791 patients followed with monthly RBD assays, 2563 were vaccinated as of 14 September 2021. Among the vaccinated patients, the estimated proportion with an undetectable RBD response increased from 6.6% (95% CI, 5.5% to 7.8%) 14 to 30 days after vaccination to 20.2% (CI, 17.0% to 23.3%) 5 to 6 months after vaccination. Estimated median index values decreased from 91.9 (CI, 78.6 to 105.2) 14 to 30 days after vaccination to 8.4 (CI, 7.6 to 9.3) 5 to 6 months after vaccination. Breakthrough infections occurred in 56 patients, with samples collected a median of 21 days before breakthrough infection. Compared with prebreakthrough index RBD values of 23 or higher (equivalent to ≥506 binding antibody units per milliliter), prebreakthrough RBD values less than 10 and values from 10 to less than 23 were associated with higher odds for breakthrough infection (rate ratios, 11.6 [CI, 3.4 to 39.5] and 6.0 [CI, 1.5 to 23.6], respectively).LIMITATIONS: Single measure of vaccine response; ascertainment of COVID-19 diagnosis from electronic health records.CONCLUSION: The antibody response to SARS-CoV-2 vaccination wanes rapidly in persons receiving dialysis. In this population, the circulating antibody response is associated with risk for breakthrough infection.PRIMARY FUNDING SOURCE: Ascend Clinical Laboratory.
View details for DOI 10.7326/M21-4176
View details for PubMedID 34904856
-
Estimated SARS-CoV-2 Seroprevalence in US Patients Receiving Dialysis 1 Year After the Beginning of the COVID-19 Pandemic.
JAMA network open
Anand, S., Montez-Rath, M., Han, J., Cadden, L., Hunsader, P., Kerschmann, R., Beyer, P., Boyd, S. D., Garcia, P., Dittrich, M., Block, G. A., Parsonnet, J., Chertow, G. M.
2021; 4 (7): e2116572
Hide
More
Abstract
Importance: Seroprevalence studies complement data on detected cases and attributed deaths in assessing the cumulative spread of the SARS-CoV-2 virus.Objective: To estimate seroprevalence of SARS-CoV-2 antibodies in patients receiving dialysis and adults in the US in January 2021 before the widespread introduction of COVID-19 vaccines.Design, Setting, and Participants: This cross-sectional study used data from the third largest US dialysis organization (US Renal Care), which has facilities located nationwide, to estimate SARS-CoV-2 seroprevalence among US patients receiving dialysis. Remainder plasma (ie, plasma that would have otherwise been discarded) of all patients receiving dialysis at US Renal Care facilities from January 1 to 31, 2021, was tested for SARS-CoV-2 antibodies. Patients were excluded if they had a documented dose of SARS-CoV-2 vaccination or if a residence zip code was missing from electronic medical records. Crude seroprevalence estimates from this sample (January 2021) were standardized to the US adult population using the 2018 American Community Survey 1-year estimates and stratified by age group, sex, self-reported race/ethnicity, neighborhood race/ethnicity composition, neighborhood income level, and urban or rural status. These data and case detection rates were then compared with data from a July 2020 subsample of patients who received dialysis at the same facilities.Exposures: Age, sex, race/ethnicity, and region of residence as well as neighborhood race/ethnicity composition, poverty, population density, and urban or rural status.Main Outcomes and Measures: The spike protein receptor-binding domain total antibody assay (Siemens Healthineers; manufacturer-reported sensitivity of 100% and specificity of 99.8%) was used to estimate crude SARS-CoV-2 seroprevalence in the unweighted sample, and then the estimated seroprevalence rates for the US dialysis and adult populations were calculated, adjusting for age, sex, and region.Results: A total of 21 464 patients (mean [SD] age, 63.1 [14.2] years; 12 265 men [57%]) were included in the unweighted sample from January 2021. The patients were disproportionately older (aged 65-79 years, 7847 [37%]; aged ≥80 years, 2668 [12%]) and members of racial/ethnic minority groups (Hispanic patients, 2945 [18%]; non-Hispanic Black patients, 4875 [29%]). Seroprevalence of SARS-CoV-2 antibodies was 18.9% (95% CI, 18.3%-19.5%) in the sample, with a seroprevalence of 18.7% (95% CI, 18.1%-19.2%) standardized to the US dialysis population, and 21.3% (95% CI, 20.3%-22.3%) standardized to the US adult population. In the unweighted sample, younger persons (aged 18-44 years, 25.9%; 95% CI, 24.1%-27.8%), those who self-identified as Hispanic or living in Hispanic neighborhoods (25.1%; 95% CI, 23.6%-26.4%), and those living in the lowest-income neighborhoods (24.8%; 95% CI, 23.2%-26.5%) were among the subgroups with the highest seroprevalence. Little variability was observed in seroprevalence by geographic region, population density, and urban or rural status in the January 2021 sample (largest regional difference, 1.2 [95% CI, 1.1-1.3] higher odds of seroprevalence in residents of the Northeast vs West).Conclusions and Relevance: In this cross-sectional study of patients receiving dialysis in the US, fewer than 1 in 4 patients had evidence of SARS-CoV-2 antibodies 1 year after the first case of SARS-CoV-2 infection was detected in the US. Results standardized to the US population indicate similar prevalence of antibodies among US adults. Vaccine introduction to younger individuals, those living in neighborhoods with a large population of racial/ethnic minority residents, and those living in low-income neighborhoods may be critical to disrupting the spread of infection.
View details for DOI 10.1001/jamanetworkopen.2021.16572
View details for PubMedID 34251441
The Relman Lab
Host-Microbe Interactions & Human Microbial Ecology
David Relman's investigative program falls within the general themes of host-pathogen interactions and human microbial ecology, and is divided into two research areas:
- Ecology of microbial communities indigenous to humans and other mammalian hosts
- Genome-wide host response patterns in systemic infectious disease
Publications
-
Abrupt perturbation and delayed recovery of the vaginal ecosystem following childbirth.
Nature communications
Costello, E. K., DiGiulio, D. B., Robaczewska, A., Symul, L., Wong, R. J., Shaw, G. M., Stevenson, D. K., Holmes, S. P., Kwon, D. S., Relman, D. A.
2023; 14 (1): 4141
Hide
More
Abstract
The vaginal ecosystem is closely tied to human health and reproductive outcomes, yet its dynamics in the wake of childbirth remain poorly characterized. Here, we profile the vaginal microbiota and cytokine milieu of participants sampled longitudinally throughout pregnancy and for at least one year postpartum. We show that delivery, regardless of mode, is associated with a vaginal pro-inflammatory cytokine response and the loss of Lactobacillus dominance. By contrast, neither the progression of gestation nor the approach of labor strongly altered the vaginal ecosystem. At 9.5-months postpartum-the latest timepoint at which cytokines were assessed-elevated inflammation coincided with vaginal bacterial communities that had remained perturbed (highly diverse) from the time of delivery. Time-to-event analysis indicated a one-year postpartum probability of transitioning to Lactobacillus dominance of 49.4%. As diversity and inflammation declined during the postpartum period, dominance by L. crispatus, the quintessential health-associated commensal, failed to return: its prevalence before, immediately after, and one year after delivery was 41%, 4%, and 9%, respectively. Revisiting our pre-delivery data, we found that a prior live birth was associated with a lower odds of L. crispatus dominance in pregnant participants-an outcome modestly tempered by a longer ( > 18-month) interpregnancy interval. Our results suggest that reproductive history and childbirth in particular remodel the vaginal ecosystem and that the timing and degree of recovery from delivery may help determine the subsequent health of the woman and of future pregnancies.
View details for DOI 10.1038/s41467-023-39849-9
View details for PubMedID 37438386
View details for PubMedCentralID 4355684
-
Rookery through rehabilitation: Microbial community assembly in newborn harbour seals after maternal separation.
Environmental microbiology
Switzer, A. D., Callahan, B. J., Costello, E. K., Bik, E. M., Fontaine, C., Gulland, F. M., Relman, D. A.
2023
Hide
More
Abstract
Microbial community assembly remains largely unexplored in marine mammals, despite its potential importance for conservation and management. Here, neonatal microbiota assembly was studied in harbour seals (Phoca vitulina richardii) at a rehabilitation facility soon after maternal separation, through weaning, to the time of release back to their native environment. We found that the gingival and rectal communities of rehabilitated harbour seals were distinct from the microbiotas of formula and pool water, and became increasingly diverse and dissimilar over time, ultimately resembling the gingival and rectal communities of local wild harbour seals. Harbour seal microbiota assembly was compared to that of human infants, revealing the rapid emergence of host specificity and evidence of phylosymbiosis even though these harbour seals had been raised by humans. Early life prophylactic antibiotics were associated with changes in the composition of the harbour seal gingival and rectal communities and surprisingly, with transient increases in alpha diversity, perhaps because of microbiota sharing during close cohabitation with other harbour seals. Antibiotic-associated effects dissipated over time. These results suggest that while early life maternal contact may provide seeding for microbial assembly, co-housing of conspecifics during rehabilitation may help neonatal mammals achieve a healthy host-specific microbiota with features of resilience.
View details for DOI 10.1111/1462-2920.16444
View details for PubMedID 37329141
-
Are bacteria, fungi, and archaea present in the midtrimester amniotic fluid?
Journal of perinatal medicine
Romero, R., Gervasi, M. T., DiGiulio, D. B., Jung, E., Suksai, M., Miranda, J., Theis, K. R., Gotsch, F., Relman, D. A.
2023
Hide
More
Abstract
This study was conducted to determine whether bacteria, fungi, or archaea are detected in the amniotic fluid of patients who underwent midtrimester amniocentesis for clinical indications.Amniotic fluid samples from 692 pregnancies were tested by using a combination of culture and end-point polymerase chain reaction (PCR) techniques. Intra-amniotic inflammation was defined as an interleukin-6 concentration >2,935 pg/mL.Microorganisms were detected in 0.3% (2/692) of cases based on cultivation, 1.73% (12/692) based on broad-range end-point PCR, and 2% (14/692) based on the combination of both methods. However, most (13/14) of these cases did not have evidence of intra-amniotic inflammation and delivered at term. Therefore, a positive culture or end-point PCR in most patients appears to have no apparent clinical significance.Amniotic fluid in the midtrimester of pregnancy generally does not contain bacteria, fungi, or archaea. Interpretation of amniotic fluid culture and molecular microbiologic results is aided by the assessment of the inflammatory state of the amniotic cavity. The presence of microorganisms, as determined by culture or a microbial signal in the absence of intra-amniotic inflammation, appears to be a benign condition.
View details for DOI 10.1515/jpm-2022-0604
View details for PubMedID 37194083
-
Profiling the human intestinal environment under physiological conditions.
Nature
Shalon, D., Culver, R. N., Grembi, J. A., Folz, J., Treit, P. V., Shi, H., Rosenberger, F. A., Dethlefsen, L., Meng, X., Yaffe, E., Aranda-Diaz, A., Geyer, P. E., Mueller-Reif, J. B., Spencer, S., Patterson, A. D., Triadafilopoulos, G., Holmes, S. P., Mann, M., Fiehn, O., Relman, D. A., Huang, K. C.
2023
Hide
More
Abstract
The spatiotemporal structure of the human microbiome1,2, proteome3 and metabolome4,5 reflects and determines regional intestinal physiology and may have implications for disease6. Yet, little is known about the distribution of microorganisms, their environment and their biochemical activity in the gut because of reliance on stool samples and limited access to only some regions of the gut using endoscopy in fasting or sedated individuals7. To address these deficiencies, we developed an ingestible device that collects samples from multiple regions of the human intestinal tract during normal digestion. Collection of 240 intestinal samples from 15 healthy individuals using the device and subsequent multi-omics analyses identified significant differences between bacteria, phages, host proteins and metabolites in the intestines versus stool. Certain microbial taxa were differentially enriched and prophage induction was more prevalent in the intestines than in stool. The host proteome and bile acid profiles varied along the intestines and were highly distinct from those of stool. Correlations between gradients in bile acid concentrations and microbial abundance predicted species that altered the bile acid pool through deconjugation. Furthermore, microbially conjugated bile acid concentrations exhibited amino acid-dependent trends that were not apparent in stool. Overall, non-invasive, longitudinal profiling of microorganisms, proteins and bile acids along the intestinal tract under physiological conditions can help elucidate the roles of the gut microbiome and metabolome in human physiology and disease.
View details for DOI 10.1038/s41586-023-05989-7
View details for PubMedID 37165188
-
Human metabolome variation along the upper intestinal tract.
Nature metabolism
Folz, J., Culver, R. N., Morales, J. M., Grembi, J., Triadafilopoulos, G., Relman, D. A., Huang, K. C., Shalon, D., Fiehn, O.
2023
Hide
More
Abstract
Most processing of the human diet occurs in the small intestine. Metabolites in the small intestine originate from host secretions, plus the ingested exposome1 and microbial transformations. Here we probe the spatiotemporal variation of upper intestinal luminal contents during routine daily digestion in 15 healthy male and female participants. For this, we use a non-invasive, ingestible sampling device to collect and analyse 274 intestinal samples and 60 corresponding stool homogenates by combining five mass spectrometry assays2,3 and 16S rRNA sequencing. We identify 1,909 metabolites, including sulfonolipids and fatty acid esters of hydroxy fatty acids (FAHFA) lipids. We observe that stool and intestinal metabolomes differ dramatically. Food metabolites display trends in dietary biomarkers, unexpected increases in dicarboxylic acids along the intestinal tract and a positive association between luminal keto acids and fruit intake. Diet-derived and microbially linked metabolites account for the largest inter-individual differences. Notably, two individuals who had taken antibiotics within 6 months before sampling show large variation in levels of bioactive FAHFAs and sulfonolipids and other microbially related metabolites. From inter-individual variation, we identify Blautia species as a candidate to be involved in FAHFA metabolism. In conclusion, non-invasive, in vivo sampling of the human small intestine and ascending colon under physiological conditions reveals links between diet, host and microbial metabolism.
View details for DOI 10.1038/s42255-023-00777-z
View details for PubMedID 37165176
The Shafer Lab
Virus Evolution focused on HIV Therapy and Drug Resistance
My group’s research is on the mechanisms and consequences of virus evolution with a focus on HIV therapy and drug resistance. We maintain a public HIV drug resistance database (http://hivdb.stanford.edu) as a resource for HIV drug resistance surveillance, interpreting HIV drug resistance tests, and HIV drug development. These three disciplines – epidemiology, clinical management, and basic science – reflect the interdisciplinary nature of antiviral drug resistance research and represent the range of our group’s activities.
Publications
-
Genotypic Resistance Testing of HIV-1 DNA in Peripheral Blood Mononuclear Cells.
Clinical microbiology reviews
Chu, C., Armenia, D., Walworth, C., Santoro, M. M., Shafer, R. W.
2022: e0005222
Hide
More
Abstract
HIV-1 DNA exists in nonintegrated linear and circular episomal forms and as integrated proviruses. In patients with plasma viremia, most peripheral blood mononuclear cell (PBMC) HIV-1 DNA consists of recently produced nonintegrated virus DNA while in patients with prolonged virological suppression (VS) on antiretroviral therapy (ART), most PBMC HIV-1 DNA consists of proviral DNA produced months to years earlier. Drug-resistance mutations (DRMs) in PBMCs are more likely to coexist with ancestral wild-type virus populations than they are in plasma, explaining why next-generation sequencing is particularly useful for the detection of PBMC-associated DRMs. In patients with ongoing high levels of active virus replication, the DRMs detected in PBMCs and in plasma are usually highly concordant. However, in patients with lower levels of virus replication, it may take several months for plasma virus DRMs to reach detectable levels in PBMCs. This time lag explains why, in patients with VS, PBMC genotypic resistance testing (GRT) is less sensitive than historical plasma virus GRT, if previous episodes of virological failure and emergent DRMs were either not prolonged or not associated with high levels of plasma viremia. Despite the increasing use of PBMC GRT in patients with VS, few studies have examined the predictive value of DRMs on the response to a simplified ART regimen. In this review, we summarize what is known about PBMC HIV-1 DNA dynamics, particularly in patients with suppressed plasma viremia, the methods used for PBMC HIV-1 GRT, and the scenarios in which PBMC GRT has been used clinically.
View details for DOI 10.1128/cmr.00052-22
View details for PubMedID 36102816
-
Susceptibility of SARS-CoV-2 Omicron Variants to Therapeutic Monoclonal Antibodies: Systematic Review and Meta-analysis.
Microbiology spectrum
Tao, K., Tzou, P. L., Kosakovsky Pond, S. L., Ioannidis, J. P., Shafer, R. W.
2022: e0092622
Hide
More
Abstract
SARS-CoV-2 Omicron variants contain many mutations in its spike receptor-binding domain, the target of all authorized monoclonal antibodies (MAbs). Determining the extent to which Omicron variants reduced MAb susceptibility is critical to preventing and treating COVID-19. We systematically reviewed PubMed and three preprint servers, last updated 11 April 2022, for the in vitro activity of authorized MAbs against the Omicron variants. Fifty-one studies were eligible, including 50 containing Omicron BA.1 susceptibility data and 17 containing Omicron BA.2 susceptibility data. The first two authorized MAb combinations, bamlanivimab/etesevimab and casirivimab/imdevimab, were largely inactive against the Omicron BA.1 and BA.2 variants. In 34 studies, sotrovimab displayed a median 4.0-fold (interquartile range [IQR]: 2.6 to 6.9) reduction in activity against Omicron BA.1, and in 12 studies, it displayed a median 17-fold (IQR: 13 to 30) reduction in activity against Omicron BA.2. In 15 studies, the combination cilgavimab/tixagevimab displayed a median 86-fold (IQR: 27 to 151) reduction in activity against Omicron BA.1, and in six studies, it displayed a median 5.4-fold (IQR: 3.7 to 6.9) reduction in activity against Omicron BA.2. In eight studies against Omicron BA.1 and six studies against Omicron BA.2, bebtelovimab displayed no reduction in activity. Disparate results between assays were common. For authorized MAbs, 51/268 (19.0%) results for wild-type control variants and 78/348 (22.4%) results for Omicron BA.1 and BA.2 variants were more than 4-fold below or 4-fold above the median result for that MAb. Highly disparate results between published assays indicate a need for improved MAb susceptibility test standardization or interassay calibration. IMPORTANCE Monoclonal antibodies (MAbs) targeting the SARS-CoV-2 spike protein are among the most effective measures for preventing and treating COVID-19. However, SARS-CoV-2 Omicron variants contain many mutations in their spike receptor-binding domains, the target of all authorized MAbs. Therefore, determining the extent to which Omicron variants reduced MAb susceptibility is critical to preventing and treating COVID-19. We identified 51 studies that reported the in vitro susceptibility of the two main Omicron variants BA.1 and BA.2 to therapeutic MAbs in advanced clinical development, including eight authorized individual MAbs and three authorized MAb combinations. We estimated the degree to which different MAbs displayed reduced activity against Omicron variants. The marked loss of activity of many MAbs against Omicron variants underscores the importance of developing MAbs that target conserved regions of spike. Highly disparate results between assays indicate the need for improved MAb susceptibility test standardization.
View details for DOI 10.1128/spectrum.00926-22
View details for PubMedID 35700134
-
Public availability of HIV-1 drug resistance sequence and treatment data: a systematic review.
The Lancet. Microbe
Rhee, S., Kassaye, S. G., Jordan, M. R., Kouamou, V., Katzenstein, D., Shafer, R. W.
2022; 3 (5): e392-e398
Hide
More
Abstract
HIV-1 pol sequences from antiretroviral therapy (ART)-naive and ART-experienced people living with HIV-1 are fundamental to understanding the genetic correlates and epidemiology of HIV-1 drug resistance (HIVDR). To assess the public availability of HIV-1 pol sequences and ART histories of the individuals from whom sequenced viruses were obtained, we performed a systematic review of PubMed and GenBank for HIVDR studies published between 2010 and 2019 that reported HIV-1 pol sequences. 934 studies met inclusion criteria, including 461 studies of ART-naive adults, 407 of ART-experienced adults, and 66 of ART-naive and ART-experienced children. Sequences were available for 317 (68·8%) studies of ART-naive individuals, 190 (46·7%) of ART-experienced individuals, and 45 (68·2%) of children. Among ART-experienced individuals, sequences plus linked ART histories were available for 82 (20·1%) studies. Sequences were available for 21 (29·2%) of 72 clinical trials. Among journals publishing more than ten studies, the proportion with available sequences ranged from 8·3% to 86·9%. Strengthened implementation of data sharing policies is required to increase the number of studies with available HIVDR data to support the enterprise of global ART in the face of emerging HIVDR.
View details for DOI 10.1016/S2666-5247(21)00250-0
View details for PubMedID 35544100
-
Coronavirus Resistance Database (CoV-RDB): SARS-CoV-2 susceptibility to monoclonal antibodies, convalescent plasma, and plasma from vaccinated persons.
PloS one
Tzou, P. L., Tao, K., Pond, S. L., Shafer, R. W.
2022; 17 (3): e0261045
Hide
More
Abstract
As novel SARS-CoV-2 variants with different patterns of spike protein mutations have emerged, the susceptibility of these variants to neutralization by antibodies has been rapidly assessed. However, neutralization data are generated using different approaches and are scattered across different publications making it difficult for these data to be located and synthesized. The Stanford Coronavirus Resistance Database (CoV-RDB; https://covdb.stanford.edu) is designed to house comprehensively curated published data on the neutralizing susceptibility of SARS-CoV-2 variants and spike mutations to monoclonal antibodies (mAbs), convalescent plasma (CP), and vaccinee plasma (VP). As of December 31, 2021, CoV-RDB encompassed 257 publications including 91 (35%) containing 9,070 neutralizing mAb susceptibility results, 131 (51%) containing 16,773 neutralizing CP susceptibility results, and 178 (69%) containing 33,540 neutralizing VP results. The database also records which spike mutations are selected during in vitro passage of SARS-CoV-2 in the presence of mAbs and which emerge in persons receiving mAbs as treatment. The CoV-RDB interface interactively displays neutralizing susceptibility data at different levels of granularity by filtering and/or aggregating query results according to one or more experimental conditions. The CoV-RDB website provides a companion sequence analysis program that outputs information about mutations present in a submitted sequence and that also assists users in determining the appropriate mutation-detection thresholds for identifying non-consensus amino acids. The most recent data underlying the CoV-RDB can be downloaded in its entirety from a GitHub repository in a documented machine-readable format.
View details for DOI 10.1371/journal.pone.0261045
View details for PubMedID 35263335
-
The biological and clinical significance of emerging SARS-CoV-2 variants.
Nature reviews. Genetics
Tao, K., Tzou, P. L., Nouhin, J., Gupta, R. K., de Oliveira, T., Kosakovsky Pond, S. L., Fera, D., Shafer, R. W.
2021
Hide
More
Abstract
The past several months have witnessed the emergence of SARS-CoV-2 variants with novel spike protein mutations that are influencing the epidemiological and clinical aspects of the COVID-19 pandemic. These variants can increase rates of virus transmission and/or increase the risk of reinfection and reduce the protection afforded by neutralizing monoclonal antibodies and vaccination. These variants can therefore enable SARS-CoV-2 to continue its spread in the face of rising population immunity while maintaining or increasing its replication fitness. The identification of four rapidly expanding virus lineages since December 2020, designated variants of concern, has ushered in a new stage of the pandemic. The four variants of concern, the Alpha variant (originally identified in the UK), the Beta variant (originally identified in South Africa), the Gamma variant (originally identified in Brazil) and the Delta variant (originally identified in India), share several mutations with one another as well as with an increasing number of other recently identified SARS-CoV-2 variants. Collectively, these SARS-CoV-2 variants complicate the COVID-19 research agenda and necessitate additional avenues of laboratory, epidemiological and clinical research.
View details for DOI 10.1038/s41576-021-00408-x
View details for PubMedID 34535792
The Singh Lab
Identifying Virulence Mechanisms Parasites Develop to Cause Disease
Our lab studies the molecular basis of pathogenesis of two medically important parasites, Toxoplasma gondii and Entamoeba histolytica. The work is aimed at understanding the virulence determinant that each parasite uses in causing disease, specifically how T. gondii evades the human immune response by converting to a dormant bradyzoite stage and how E. histolyticacauses invasive colonic and hepatic disease.
Publications
-
Extracellular Vesicles and Their Impact on the Biology of Protozoan Parasites.
Tropical medicine and infectious disease
Sharma, M., Lozano-Amado, D., Chowdhury, D., Singh, U.
2023; 8 (9)
Hide
More
Abstract
Extracellular vesicles (EVs) are lipid-membrane-bound structures produced naturally by all cells and have a variety of functions. EVs act as vehicles for transporting important molecular signals from one cell to another. Several parasites have been shown to secrete EVs, and their biological functions have been extensively studied. EVs have been shown to facilitate communication with the host cells (such as modulation of the host's immune system or promoting attachment and invasion into the host cells) or for communication between parasitic cells (e.g., transferring drug-resistance genes or factors modulating stage conversion). It is clear that EVs play an important role in host-parasite interactions. In this review, we summarized the latest research on the EVs secreted by protozoan parasites and their role in host-parasite and parasite-parasite communications.
View details for DOI 10.3390/tropicalmed8090448
View details for PubMedID 37755909
-
The Tomato Brown Rugose Fruit Virus Movement Protein Gene Is a Novel Microbial Source Tracking Marker.
Applied and environmental microbiology
Natarajan, A., Fremin, B. J., Schmidtke, D. T., Wolfe, M. K., Zlitni, S., Graham, K. E., Brooks, E. F., Severyn, C. J., Sakamoto, K. M., Lacayo, N. J., Kuersten, S., Koble, J., Caves, G., Kaplan, I., Singh, U., Jagannathan, P., Rezvani, A. R., Bhatt, A. S., Boehm, A. B.
2023: e0058323
Hide
More
Abstract
Microbial source tracking (MST) identifies sources of fecal contamination in the environment using host-associated fecal markers. While there are numerous bacterial MST markers that can be used herein, there are few such viral markers. Here, we designed and tested novel viral MST markers based on tomato brown rugose fruit virus (ToBRFV) genomes. We assembled eight nearly complete genomes of ToBRFV from wastewater and stool samples from the San Francisco Bay Area in the United States. Next, we developed two novel probe-based reverse transcription-PCR (RT-PCR) assays based on conserved regions of the ToBRFV genome and tested the markers' sensitivities and specificities using human and non-human animal stool as well as wastewater. The ToBRFV markers are sensitive and specific; in human stool and wastewater, they are more prevalent and abundant than a commonly used viral marker, the pepper mild mottle virus (PMMoV) coat protein (CP) gene. We used the assays to detect fecal contamination in urban stormwater samples and found that the ToBRFV markers matched cross-assembly phage (crAssphage), an established viral MST marker, in prevalence across samples. Taken together, these results indicate that ToBRFV is a promising viral human-associated MST marker. IMPORTANCE Human exposure to fecal contamination in the environment can cause transmission of infectious diseases. Microbial source tracking (MST) can identify sources of fecal contamination so that contamination can be remediated and human exposures can be reduced. MST requires the use of host-associated MST markers. Here, we designed and tested novel MST markers from genomes of tomato brown rugose fruit virus (ToBRFV). The markers are sensitive and specific to human stool and highly abundant in human stool and wastewater samples.
View details for DOI 10.1128/aem.00583-23
View details for PubMedID 37404180
-
Researching COVID to Enhance Recovery (RECOVER) adult study protocol: Rationale, objectives, and design.
PloS one
Horwitz, L. I., Thaweethai, T., Brosnahan, S. B., Cicek, M. S., Fitzgerald, M. L., Goldman, J. D., Hess, R., Hodder, S. L., Jacoby, V. L., Jordan, M. R., Krishnan, J. A., Laiyemo, A. O., Metz, T. D., Nichols, L., Patzer, R. E., Sekar, A., Singer, N. G., Stiles, L. E., Taylor, B. S., Ahmed, S., Algren, H. A., Anglin, K., Aponte-Soto, L., Ashktorab, H., Bassett, I. V., Bedi, B., Bhadelia, N., Bime, C., Bind, M. C., Black, L. J., Blomkalns, A. L., Brim, H., Castro, M., Chan, J., Charney, A. W., Chen, B. K., Chen, L. Q., Chen, P., Chestek, D., Chibnik, L. B., Chow, D. C., Chu, H. Y., Clifton, R. G., Collins, S., Costantine, M. M., Cribbs, S. K., Deeks, S. G., Dickinson, J. D., Donohue, S. E., Durstenfeld, M. S., Emery, I. F., Erlandson, K. M., Facelli, J. C., Farah-Abraham, R., Finn, A. V., Fischer, M. S., Flaherman, V. J., Fleurimont, J., Fonseca, V., Gallagher, E. J., Gander, J. C., Gennaro, M. L., Gibson, K. S., Go, M., Goodman, S. N., Granger, J. P., Greenway, F. L., Hafner, J. W., Han, J. E., Harkins, M. S., Hauser, K. S., Heath, J. R., Hernandez, C. R., Ho, O., Hoffman, M. K., Hoover, S. E., Horowitz, C. R., Hsu, H., Hsue, P. Y., Hughes, B. L., Jagannathan, P., James, J. A., John, J., Jolley, S., Judd, S. E., Juskowich, J. J., Kanjilal, D. G., Karlson, E. W., Katz, S. D., Kelly, J. D., Kelly, S. W., Kim, A. Y., Kirwan, J. P., Knox, K. S., Kumar, A., Lamendola-Essel, M. F., Lanca, M., Lee-Lannotti, J. K., Lefebvre, R. C., Levy, B. D., Lin, J. Y., Logarbo, B. P., Logue, J. K., Longo, M. T., Luciano, C. A., Lutrick, K., Malakooti, S. K., Mallett, G., Maranga, G., Marathe, J. G., Marconi, V. C., Marshall, G. D., Martin, C. F., Martin, J. N., May, H. T., McComsey, G. A., McDonald, D., Mendez-Figueroa, H., Miele, L., Mittleman, M. A., Mohandas, S., Mouchati, C., Mullington, J. M., Nadkarni, G. N., Nahin, E. R., Neuman, R. B., Newman, L. T., Nguyen, A., Nikolich, J. Z., Ofotokun, I., Ogbogu, P. U., Palatnik, A., Palomares, K. T., Parimon, T., Parry, S., Parthasarathy, S., Patterson, T. F., Pearman, A., Peluso, M. J., Pemu, P., Pettker, C. M., Plunkett, B. A., Pogreba-Brown, K., Poppas, A., Porterfield, J. Z., Quigley, J. G., Quinn, D. K., Raissy, H., Rebello, C. J., Reddy, U. M., Reece, R., Reeder, H. T., Rischard, F. P., Rosas, J. M., Rosen, C. J., Rouphael, N. G., Rouse, D. J., Ruff, A. M., Saint Jean, C., Sandoval, G. J., Santana, J. L., Schlater, S. M., Sciurba, F. C., Selvaggi, C., Seshadri, S., Sesso, H. D., Shah, D. P., Shemesh, E., Sherif, Z. A., Shinnick, D. J., Simhan, H. N., Singh, U., Sowles, A., Subbian, V., Sun, J., Suthar, M. S., Teunis, L. J., Thorp, J. M., Ticotsky, A., Tita, A. T., Tragus, R., Tuttle, K. R., Urdaneta, A. E., Utz, P. J., VanWagoner, T. M., Vasey, A., Vernon, S. D., Vidal, C., Walker, T., Ward, H. D., Warren, D. E., Weeks, R. M., Weiner, S. J., Weyer, J. C., Wheeler, J. L., Whiteheart, S. W., Wiley, Z., Williams, N. J., Wisnivesky, J. P., Wood, J. C., Yee, L. M., Young, N. M., Zisis, S. N., Foulkes, A. S.
2023; 18 (6): e0286297
Hide
More
Abstract
SARS-CoV-2 infection can result in ongoing, relapsing, or new symptoms or other health effects after the acute phase of infection; termed post-acute sequelae of SARS-CoV-2 infection (PASC), or long COVID. The characteristics, prevalence, trajectory and mechanisms of PASC are ill-defined. The objectives of the Researching COVID to Enhance Recovery (RECOVER) Multi-site Observational Study of PASC in Adults (RECOVER-Adult) are to: (1) characterize PASC prevalence; (2) characterize the symptoms, organ dysfunction, natural history, and distinct phenotypes of PASC; (3) identify demographic, social and clinical risk factors for PASC onset and recovery; and (4) define the biological mechanisms underlying PASC pathogenesis.RECOVER-Adult is a combined prospective/retrospective cohort currently planned to enroll 14,880 adults aged ≥18 years. Eligible participants either must meet WHO criteria for suspected, probable, or confirmed infection; or must have evidence of no prior infection. Recruitment occurs at 86 sites in 33 U.S. states, Washington, DC and Puerto Rico, via facility- and community-based outreach. Participants complete quarterly questionnaires about symptoms, social determinants, vaccination status, and interim SARS-CoV-2 infections. In addition, participants contribute biospecimens and undergo physical and laboratory examinations at approximately 0, 90 and 180 days from infection or negative test date, and yearly thereafter. Some participants undergo additional testing based on specific criteria or random sampling. Patient representatives provide input on all study processes. The primary study outcome is onset of PASC, measured by signs and symptoms. A paradigm for identifying PASC cases will be defined and updated using supervised and unsupervised learning approaches with cross-validation. Logistic regression and proportional hazards regression will be conducted to investigate associations between risk factors, onset, and resolution of PASC symptoms.RECOVER-Adult is the first national, prospective, longitudinal cohort of PASC among US adults. Results of this study are intended to inform public health, spur clinical trials, and expand treatment options.NCT05172024.
View details for DOI 10.1371/journal.pone.0286297
View details for PubMedID 37352211
View details for PubMedCentralID PMC10289397
-
Transparent Reporting at the Journal of Infectious Diseases.
The Journal of infectious diseases
Clancy, C. J., Li, J. Z., Singh, U., Sears, C. L.
2023
Hide
More
View details for DOI 10.1093/infdis/jiad129
View details for PubMedID 37134129
-
Diversity and Plasticity of Virulent Characteristics of Entamoeba histolytica.
Tropical medicine and infectious disease
Yanagawa, Y., Singh, U.
2023; 8 (5)
Hide
More
Abstract
The complexity of clinical syndromes of amebiasis, caused by the parasite Entamoeba histolytica, stems from the intricate interplay between the host immune system, the virulence of the invading parasite, and the surrounding environment. Although there is still a relative paucity of information about the precise relationship between virulence factors and the pathogenesis of Entamoeba histolytica, by accumulating data from clinical and basic research, researchers have identified essential pathogenic factors that play a critical role in the pathogenesis of amebiasis, providing important insights into disease development through animal models. Moreover, the parasite's genetic variability has been associated with differences in virulence and disease outcomes, making it important to fully understand the epidemiology and pathogenesis of amebiasis. Deciphering the true mechanism of disease progression in humans caused by this parasite is made more difficult through its ability to demonstrate both genomic and pathological plasticity. The objective of this article is to underscore the heterogeneous nature of disease states and the malleable virulence characteristics in experimental models, while also identifying persistent scientific issues that need to be addressed.
View details for DOI 10.3390/tropicalmed8050255
View details for PubMedID 37235303
The Wang Lab
Human Immune Functions & Susceptibility to Diseases
Taia Wang’s laboratory studies mechanisms underlying the heterogeneity in human immune function during vaccination and viral infection. We are particularly interested in antibody-mediated immunity and determinants of susceptibility to antibody-mediated diseases.
Publications
-
Autoantibodies are highly prevalent in non-SARS-CoV-2 respiratory infections and critical illness.
JCI insight
Feng, A., Yang, E. Y., Moore, A. R., Dhingra, S., Chang, S. E., Yin, X., Pi, R., Mack, E. K., Völkel, S., Geßner, R., Gündisch, M., Neubauer, A., Renz, H., Tsiodras, S., Fragkou, P. C., Asuni, A. A., Levitt, J. E., Wilson, J. G., Leong, M., Lumb, J. H., Mao, R., Pinedo, K., Roque, J., Richards, C. M., Stabile, M., Swaminathan, G., Salagianni, M. L., Triantafyllia, V., Bertrams, W., Blish, C. A., Carette, J. E., Frankovich, J., Meffre, E., Nadeau, K. C., Singh, U., Wang, T. T., Luning Prak, E. T., Herold, S., Andreakos, E., Schmeck, B., Skevaki, C., Rogers, A. J., Utz, P. J.
2023; 8 (3)
Hide
More
Abstract
The widespread presence of autoantibodies in acute infection with SARS-CoV-2 is increasingly recognized, but the prevalence of autoantibodies in non-SARS-CoV-2 infections and critical illness has not yet been reported. We profiled IgG autoantibodies in 267 patients from 5 independent cohorts with non-SARS-CoV-2 viral, bacterial, and noninfectious critical illness. Serum samples were screened using Luminex arrays that included 58 cytokines and 55 autoantigens, many of which are associated with connective tissue diseases (CTDs). Samples positive for anti-cytokine antibodies were tested for receptor blocking activity using cell-based functional assays. Anti-cytokine antibodies were identified in > 50% of patients across all 5 acutely ill cohorts. In critically ill patients, anti-cytokine antibodies were far more common in infected versus uninfected patients. In cell-based functional assays, 11 of 39 samples positive for select anti-cytokine antibodies displayed receptor blocking activity against surface receptors for Type I IFN, GM-CSF, and IL-6. Autoantibodies against CTD-associated autoantigens were also commonly observed, including newly detected antibodies that emerged in longitudinal samples. These findings demonstrate that anti-cytokine and autoantibodies are common across different viral and nonviral infections and range in severity of illness.
View details for DOI 10.1172/jci.insight.163150
View details for PubMedID 36752204
-
Early immune markers of clinical, virological, and immunological outcomes in patients with COVID-19: a multi-omics study.
eLife
Hu, Z., van der Ploeg, K., Chakraborty, S., Arunachalam, P. S., Mori, D. A., Jacobson, K. B., Bonilla, H., Parsonnet, J., Andrews, J. R., Holubar, M., Subramanian, A., Khosla, C., Maldonado, Y., Hedlin, H., de la Parte, L., Press, K., Ty, M., Tan, G. S., Blish, C., Takahashi, S., Rodriguez-Barraquer, I., Greenhouse, B., Butte, A. J., Singh, U., Pulendran, B., Wang, T. T., Jagannathan, P.
2022; 11
Hide
More
Abstract
The great majority of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) infections are mild and uncomplicated, but some individuals with initially mild COVID-19 progressively develop more severe symptoms. Furthermore, there is substantial heterogeneity in SARS-CoV-2-specific memory immune responses following infection. There remains a critical need to identify host immune biomarkers predictive of clinical and immunological outcomes in SARS-CoV-2-infected patients.Leveraging longitudinal samples and data from a clinical trial (N=108) in SARS-CoV-2-infected outpatients, we used host proteomics and transcriptomics to characterize the trajectory of the immune response in COVID-19 patients. We characterized the association between early immune markers and subsequent disease progression, control of viral shedding, and SARS-CoV-2-specific T cell and antibody responses measured up to 7 months after enrollment. We further compared associations between early immune markers and subsequent T cell and antibody responses following natural infection with those following mRNA vaccination. We developed machine-learning models to predict patient outcomes and validated the predictive model using data from 54 individuals enrolled in an independent clinical trial.We identify early immune signatures, including plasma RIG-I levels, early IFN signaling, and related cytokines (CXCL10, MCP1, MCP-2, and MCP-3) associated with subsequent disease progression, control of viral shedding, and the SARS-CoV-2-specific T cell and antibody response measured up to 7 months after enrollment. We found that several biomarkers for immunological outcomes are shared between individuals receiving BNT162b2 (Pfizer-BioNTech) vaccine and COVID-19 patients. Finally, we demonstrate that machine-learning models using 2-7 plasma protein markers measured early within the course of infection are able to accurately predict disease progression, T cell memory, and the antibody response post-infection in a second, independent dataset.Early immune signatures following infection can accurately predict clinical and immunological outcomes in outpatients with COVID-19 using validated machine-learning models.Support for the study was provided from National Institute of Health/National Institute of Allergy and Infectious Diseases (NIH/NIAID) (U01 AI150741-01S1 and T32-AI052073), the Stanford's Innovative Medicines Accelerator, National Institutes of Health/National Institute on Drug Abuse (NIH/NIDA) DP1DA046089, and anonymous donors to Stanford University. Peginterferon lambda provided by Eiger BioPharmaceuticals.
View details for DOI 10.7554/eLife.77943
View details for PubMedID 36239699
-
Durable protection against the SARS-CoV-2 Omicron variant is induced by an adjuvanted subunit vaccine.
Science translational medicine
Arunachalam, P. S., Feng, Y., Ashraf, U., Hu, M., Walls, A. C., Edara, V. V., Zarnitsyna, V. I., Aye, P. P., Golden, N., Miranda, M. C., Green, K. W., Threeton, B. M., Maness, N. J., Beddingfield, B. J., Bohm, R. P., Scheuermann, S. E., Goff, K., Dufour, J., Russell-Lodrigue, K., Kepl, E., Fiala, B., Wrenn, S., Ravichandran, R., Ellis, D., Carter, L., Rogers, K., Shirreff, L. M., Ferrell, D. E., Deb Adhikary, N. R., Fontenot, J., Hammond, H. L., Frieman, M., Grifoni, A., Sette, A., O'Hagan, D. T., Van Der Most, R., Rappuoli, R., Villinger, F., Kleanthous, H., Rappaport, J., Suthar, M. S., Veesler, D., Wang, T. T., King, N. P., Pulendran, B.
2022; 14 (658): eabq4130
Hide
More
Abstract
Despite the remarkable efficacy of COVID-19 vaccines, waning immunity and the emergence of SARS-CoV-2 variants such as Omicron represents a global health challenge. Here, we present data from a study in nonhuman primates demonstrating durable protection against the Omicron BA.1 variant induced by a subunit SARS-CoV-2 vaccine comprising the receptor binding domain of the ancestral strain (RBD-Wu) on the I53-50 nanoparticle adjuvanted with AS03, which was recently authorized for use in individuals 18 years or older. Vaccination induced neutralizing antibody (nAb) titers that were maintained at high concentrations for at least 1 year after two doses, with a pseudovirus nAb geometric mean titer (GMT) of 1978 and a live virus nAb GMT of 1331 against the ancestral strain but not against the Omicron BA.1 variant. However, a booster dose at 6 to 12 months with RBD-Wu or RBD-beta (RBD from the Beta variant) displayed on I53-50 elicited high neutralizing titers against the ancestral and Omicron variants. In addition, we observed persistent neutralization titers against a panel of sarbecoviruses, including SARS-CoV. Furthermore, there were substantial and persistent memory T and B cell responses reactive to Beta and Omicron variants. Vaccination resulted in protection against Omicron infection in the lung and suppression of viral burden in the nares at 6 weeks after the final booster immunization. Even at 6 months after vaccination, we observed protection in the lung and rapid control of virus in the nares. These results highlight the durable and cross-protective immunity elicited by the AS03-adjuvanted RBD-I53-50 nanoparticle vaccine.
View details for DOI 10.1126/scitranslmed.abq4130
View details for PubMedID 35976993
-
Anti-nucleocapsid antibody levels and pulmonary comorbid conditions are linked to post-COVID-19 syndrome.
JCI insight
Jia, X., Cao, S., Lee, A. S., Manohar, M., Sindher, S. B., Ahuja, N., Artandi, M., Blish, C. A., Blomkalns, A. L., Chang, I., Collins, W. J., Desai, M., Din, H. N., Do, E., Fernandes, A., Geng, L. N., Rosenberg-Hasson, Y., Mahoney, M. R., Glascock, A. L., Chan, L. Y., Fong, S. Y., Phelps, M., Raeber, O., Purington, N., Röltgen, K., Rogers, A. J., Snow, T., Wang, T. T., Solis, D., Vaughan, L., Verghese, M., Maecker, H., Wittman, R., Puri, R., Kistler, A., Yang, S., Boyd, S. D., Pinsky, B. A., Chinthrajah, S., Nadeau, K. C.
2022; 7 (13)
Hide
More
Abstract
BACKGROUNDProlonged symptoms after SARS-CoV-2 infection are well documented. However, which factors influence development of long-term symptoms, how symptoms vary across ethnic groups, and whether long-term symptoms correlate with biomarkers are points that remain elusive.METHODSAdult SARS-CoV-2 reverse transcription PCR-positive (RT-PCR-positive) patients were recruited at Stanford from March 2020 to February 2021. Study participants were seen for in-person visits at diagnosis and every 1-3 months for up to 1 year after diagnosis; they completed symptom surveys and underwent blood draws and nasal swab collections at each visit.RESULTSOur cohort (n = 617) ranged from asymptomatic to critical COVID-19 infections. In total, 40% of participants reported at least 1 symptom associated with COVID-19 six months after diagnosis. Median time from diagnosis to first resolution of all symptoms was 44 days; median time from diagnosis to sustained symptom resolution with no recurring symptoms for 1 month or longer was 214 days. Anti-nucleocapsid IgG level in the first week after positive RT-PCR test and history of lung disease were associated with time to sustained symptom resolution. COVID-19 disease severity, ethnicity, age, sex, and remdesivir use did not affect time to sustained symptom resolution.CONCLUSIONWe found that all disease severities had a similar risk of developing post-COVID-19 syndrome in an ethnically diverse population. Comorbid lung disease and lower levels of initial IgG response to SARS-CoV-2 nucleocapsid antigen were associated with longer symptom duration.TRIAL REGISTRATIONClinicalTrials.gov, NCT04373148.FUNDINGNIH UL1TR003142 CTSA grant, NIH U54CA260517 grant, NIEHS R21 ES03304901, Sean N Parker Center for Allergy and Asthma Research at Stanford University, Chan Zuckerberg Biohub, Chan Zuckerberg Initiative, Sunshine Foundation, Crown Foundation, and Parker Foundation.
View details for DOI 10.1172/jci.insight.156713
View details for PubMedID 35801588
-
Harnessing IgG Fc glycosylation for clinical benefit.
Current opinion in immunology
Archer, E. J., Gonzalez, J. C., Ghosh, D., Mellins, E. D., Wang, T. T.
2022; 77: 102231
Hide
More
Abstract
The effector activity of IgG antibodies is regulated at several levels, including IgG subclass, modifications of the Fc glycan, and the distribution of Type I and II Fcgamma receptors (FcgammaR) on effector cells. Here, we explore how Fc glycosylation, particularly sialylation and fucosylation, tunes cellular responses to immune complexes. We review the current understanding of the pathways and mechanisms underlying this biology, address FcgammaR in antigen presentation, and discuss aspects of the clinical understanding of Fc glycans in therapies and disease.
View details for DOI 10.1016/j.coi.2022.102231
View details for PubMedID 35797920