Genetics Department News

December 2022


Professor Polly Fordyce is the recipient of the 2023 Eli Lilly Award in Biological Chemistry.

She is being recognized for her significant contributions to biological chemistry, especially her revolutionary work on applying high throughput biochemical techniques and analyses to investigate molecular recognition. Her novel strategies have dissected quantitative relationships that govern biological function.  The work has contributed fundamental new insights into genetic variation, enzyme kinetics and thermodynamics.

October 2022

Serena Sanulli is named NIH Director's New Innovator Award Recipient.

Dr. Sanulli's lab studies genome organization across length and time scales with the long-term goal to understand how cells leverage the diverse biophysical properties of chromatin to regulate genome functions. She is the recipient of the Independent Postdoctoral Fellow Award from the program for Breakthrough Biomedical Research, the McCormick and Gabilan Faculty Fellowship, and she was recently named a Searle Scholar.


May 2022

Two Key Types of Genes Identified
The human genome includes millions of "enhancer" sequences that turn genes on and off—but it has been unclear which enhancers can regulate which genes. A new study led by researchers from the Engreitz Lab finds that two types of genes respond differently to enhancers, and that these responses are controlled by specific sequences in gene promoters. Link to article:

April 2022

2022 Winners of the FNIH Lurie Prize in Biomedical Sciences Provide Powerful Contributions to Our Understanding of the Aging Process

The Foundation for the National Institutes of Health (FNIH) has named Anne Brunet, Ph.D., and Andrew Dillin, Ph.D., co-winners of the 2022 Lurie Prize in Biomedical Sciences

Read more

March 2022

Transcriptional neighborhoods regulate transcript isoform lengths and expression levels

Authors: Aaron N. Brooks1†‡, Amanda L. Hughes1†, Sandra Clauder-Münster1, Leslie A. Mitchell2, Jef D. Boeke2,3, Lars M. Steinmetz1,4,5 *


1European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany

2Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA.

3Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA

4Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA 5Department of Genetics, School of Medicine, Stanford University, Stanford, CA 94305, USA *Correspondence to:
†Equal contribution

Abstract: Sequence features of genes and their flanking regulatory regions are determinants of RNA transcript isoform expression and have been used as context-independent, plug-and-play modules in synthetic biology. However, genetic context, including the adjacent transcriptional environment, also influences transcript isoform expression levels and boundaries. We used synthetic yeast strains with stochastically repositioned genes to systematically disentangle sequence from contextual effects. Profiling 120 million full-length transcript molecules across 612 genomic perturbations, we observed sequence-independent alterations to gene expression levels and transcript isoform boundaries that were influenced by neighboring transcription. We identified features of transcriptional context that could predict these alterations and used these features to engineer a synthetic circuit where neighboring transcription controlled transcript length. This demonstrates how positional context can be leveraged in synthetic genome engineering.


February 2022

“90 Seconds with Lisa Kim”: Genome sequencing sets Guinness World Record

A new ultra-rapid genome sequencing approach developed by Stanford Medicine scientists sets the first Guinness World Record for the fastest DNA sequencing technique, producing results for one study participant in just over five hours. See the video on StanfordMed TODAY.

April 2021

Genome-wide enhancer maps link risk variants to disease genes

Genome-wide association studies (GWAS) have identified thousands of noncoding loci that are associated with human diseases and complex traits, each of which could reveal insights into the mechanisms of disease1. Many of the underlying causal variants may affect enhancers2,3, but we lack accurate maps of enhancers and their target genes to interpret such variants. Read more...

Image credit: Zayna Sheikh

April 2020

Fitbit detecting oncoming sickness 

Dr. Michael Snyder discovered that among the millions of measurements they make every day, subtle variances in a Fitbit's data could be a predictor of an oncoming illness.


April 2020

Department of Genetics COVID-19 Research

Our scientists from the Department of Genetics have launched research projects as part of the global response to COVID-19. 


April 2020

Stanford Medicine scientists hope to use data from wearable devices to predict illness, including COVID-19

Researchers from Stanford Medicine and their collaborators aim to predict the onset of viral infection through data provided by wearable technology. What they need now are participants.

Full Story...

September 2018

We are bombarded by thousands of diverse species and chemicals

We are all exposed to a vast and dynamic cloud of microbes, chemicals and particulates that, if visible, might make us look something like Pig-Pen from Peanuts.

Full Story...

September 2018

Researchers can forecast risk of deadly vascular condition from genome sequence

A new approach that distills deluges of genetic data and patient health records has identified a set of telltale patterns that can predict a person’s risk for a common, and often fatal, cardiovascular disease, according to a new study from the Stanford University School of Medicine.

Full Story...

July 2018

Diabetic-level glucose spikes seen in healthy people

A study out of Stanford in which blood sugar levels were continuously monitored reveals that even people who think they’re “healthy” should pay attention to what they eat.

Full Story...

May 2018

New center sets out to stop disease before it starts

At the Precision Health and Integrated Diagnostics Center, scientists turn the norms of disease research on their head, searching not for treatments but for ways to prevent disease entirely.

It’s not often that world-class scientists band together to investigate disease with no intention of curing it. Yet upward of 55 scientists at Stanford’s Precision Health and Integrated Diagnostics Center are doing just that in a push to get researchers and physicians off their heels and onto their toes in the battle against disease..

Full Story...

April 2018

CRISPR used to genetically edit coral

In a proof-of-principle study, Stanford scientists and their colleagues used the CRISPR-Cas9 gene-editing system to modify genes in coral, suggesting that the tool could one day aid conservation efforts.

Coral reefs on the precipice of collapse may get a conservation boost from the gene-editing tool known as CRISPR, according to researchers at the Stanford University School of Medicine and their collaborators.

Full Story...

January 2018

Weight flux alters molecular profile

Stanford scientists have found links between changes in a person’s weight and shifts in their microbiome, immune system and cardiovascular system.

A paper describing the work was published online Jan. 17 in Cell Systems. The lead authors are Stanford postdoctoral scholars Wenyu Zhou, PhD, and Hannes Röst, PhD; staff scientist Kévin Contrepois, PhD; and former postdoctoral scholar Brian Piening, PhD. Senior authorship is shared by Michael Snyder, PhD, professor of genetics at Stanford; Tracey McLaughlin, MD, professor of medicine at Stanford; and George Weinstock, PhD, professor and director of microbial genomics at the Jackson Laboratory, an independent, nonprofit biomedical research institution.

Full story


October 2017

Study uncovers mutation that supercharges tumor-suppressor

Cancer researchers have long hailed p53, a tumor-suppressor protein, for its ability to keep unruly cells from forming tumors. But for such a highly studied protein, p53 has hidden its tactics well.

Now, researchers at the Stanford University School of Medicine have tapped into what makes p53 tick, delineating a clear pathway that shows how the protein mediates anti-tumor activity in pancreatic cancer. The team’s research also revealed something unexpected: A particular mutation in the p53 gene amplified the protein’s tumor-fighting capabilities, creating a “super tumor suppressor.”

Full story...

Tissue-specific gene expression uncovered, linked to disease

Understanding how a person’s DNA sequence affects gene expression in various tissues reveals the molecular mechanisms of disease. Stanford scientists involved in the National Institutes Health’s GTEx project have published some of their insights.

Full Story...

May 2017

John Pringle and Anne Villeneuve elected to National Academy of Sciences  

Three Stanford researchers are among the 84 newly elected members of the National Academy of Sciences.

The new members from Stanford are Dominique Bergmann, PhD, professor of biology; John Pringle, PhD, professor of genetics; and Anne Villeneuve, PhD, professor of developmental biology and of genetics. Full story..

February 2017

$10.5 million awarded to researchers to work on DNA encyclopedia

Stanford’s William Greenleaf, Michael Bassik, Michael Snyder, Jonathan Pritchard and Michael Cherry have won grants to work on the federally funded Encyclopedia of DNA Elements. Full story..

January 2017

Wearable sensors can tell when you are getting sick

New research from Stanford shows that fitness monitors and other wearable biosensors can tell when an individual’s heart rate, skin temperature and other measures are abnormal, suggesting possible illness. Full story..

Department Chair

"Genetics and genomics are undergoing an unparalleled revolution: our mission is to continue to lead this revolution for a better understanding of biology and human health."

Michael Snyder, Ph.D.
Stanford W. Ascherman Professor and Chair, Department of Genetics
Director, Center for Genomics and Personalized Medicine

Show Your Support

A gift to the Stanford Genetics department supports our research and education. Donations are vital to the achievements of our work and are greatly appreciated. Checks payable to Stanford University.  Please note on the check WAZC/Genetics and specifics of where the funds should be directed. Thank you.

Kindly send by mail to:

Development Services
PO Box 20466
Stanford, CA 94309

CALL US: 650.725.2504


About Us

An underlying theme in our Department is that genetics is not merely a set of tools but a coherent and fruitful way of thinking about biology and medicine. To this end, we emphasize a spectrum of approaches based on molecules, organisms, populations, and genomes.

We provide training through laboratory rotations, dissertation research, seminar series, didactic and interactive coursework, and an annual three-day retreat of nearly 200 students, faculty, postdoctoral fellows, and research staff.

The mission of the Department includes education and teaching as well as research; graduates from our program pursue careers in many different venues including research in academic or industrial settings, health care, health policy, and education. We are especially committed to increasing diversity within the program, and to the training of individuals from traditionally underrepresented minority groups to apply.

#1 Graduate School in Genetics/Genomics/Bioinformatics
by U.S. News