RNA, no mere messenger, calls some shots in gene activity, researchers find

Large, seemingly useless pieces of RNA, a molecule originally considered only a lowly messenger for DNA, play an important role in letting cells know where they are in the body and what they are supposed to become, researchers at the School of Medicine have discovered.

The finding implies that ancient RNA molecules can orchestrate gene activity across vast portions of the human genome - a cell's genetic blueprint. It also suggests they may be important in cancer development and stem cell maintenance. Overall, the work adds another brick to the growing wall of evidence suggesting that RNA is more than a mere genomic servant.

RNA is best known for ferrying protein-coding instructions from DNA, once thought to be the master molecule of the genome, to the cell's assembly factories. But cracks in this theory appeared when it became evident that many RNA molecules aren't capable of making protein. While more recent research has shown that small bits of RNA can silence individual genes by interfering with their expression - a la Stanford professor Andrew Fire's recent Nobel work - longer pieces, called non-coding RNAs, have been more perplexing.

'These ncRNAs have long been molecules of mystery,' said John Rinn, PhD, a postdoctoral scholar in the laboratory of Howard Chang, MD, PhD, assistant professor of dermatology. 'They look just like they should code for proteins, but they don't.'

Although ncRNAs have been shown to affect the expression of neighboring genes, the relative abundance of the molecules - accounting for about half the DNA transcribed in the cell - suggests they may have a wider sphere of influence than previously thought. Now Rinn, Chang and their collaborators have discovered that ncRNAs can influence gene expression patterns at distant locations in the cell.

Courtesy of Howard Chang rna

Researchers have discovered a new type of RNA molecule that can indicate where a cell is located in the human body. By sifting through the human genomic sequence using DNA microarrays, researchers have discovered that cells can know where they are in the body not only by genes but also by mysterious large RNA molecules.

'We were surprised to find that at least one of these molecules can suppress genes on a completely different chromosome,' said Chang. 'This opens up the whole genome to potential regulation by ncRNAs.'

The research was published in the June 29 issue of the journal Cell.

The researchers were investigating how human skin cells, or fibroblasts, know where they are in the body. They had previously shown in different types of cells that groups of genes known as HOX act as a sort of global positioning system by maintaining unique patterns of expression over many generations of cell division. But until Rinn used a new type of gene chip called a tiling array in the new study to home in on nearby regions of DNA, they didn't know how the HOX expression patterns themselves were determined.

'I like to think of it as genomic scuba diving,' said Rinn of the experiments. The tiling array allowed him to map the boundaries of the regions around four clustered sets, or loci, of HOX genes, known as HOXA through HOXD, to near-nucleotide resolution. That's somewhat like zooming in on a single home from a satellite map on Google Earth. 'It gives us an up-close, unbiased view of what's actually happening at the chromosomal level,' said Rinn.

Not only did Rinn locate many previously unknown ncRNA genes nestled among the HOX genes, he also identified areas that serve as shared landing pads for proteins that either activate or suppress the neighboring regions. 'It's a striking pattern,' said Rinn. 'Like a light switch, the same stretch of DNA can be used to turn genes either on or off, depending on their protein partners.' But then Rinn looked more deeply.

The fact that the ncRNAs have remained virtually unchanged over millions of years suggests they may be playing non-traditional but vital roles in gene expression. The researchers found that depleting one ncRNA dubbed HOTAIR, in the HOXC region on chromosome 12 of a skin cell, significantly increased the expression of HOXD genes on chromosome 2. The finding marks the first time that ncRNA has been shown to affect gene expression on a chromosome other than its own.

The researchers believe that HOTAIR functions by affecting chromosomal packing in the nucleus. Inactive chromosomal regions are tightly wound around proteins called histones and cannot be copied into RNA. Loss of HOTAIR in skin cells specifically frees the HOXD control region for binding by activating proteins.

'Next we need to find out how these RNAs work structurally,' said Rinn, 'and what upstream regulatory molecules might be controlling their expression.' They have one clue: HOTAIR binds to and activates a group of enzymes called the Polycomb Repressive Complex 2 that modifies histones and helps them wind up the DNA.

The researchers' interest is more than just theoretical. Polycomb proteins are improperly regulated in some types of cancers. HOX gene expression patterns are likely important to keep stem cells from improperly differentiating into skin, muscle or other tissues. Understanding how ncRNAs affect these processes have important implications for cancer therapies and stem cell research, they believe.

'We are really interested in how ncRNA finds its putative target in the genome,' said Chang. 'There remains a whole level of biological complexity to be explored, including how HOTAIR knows where to go, how it talks to other factors and how it controls histones.'

The work will also provide insight into the evolution of gene regulation. Because RNA is thought to have preceded DNA in the evolutionary timeline, it makes sense that it still plays a role in controlling DNA's function.

Rinn and Chang's Stanford collaborators on the study include cancer biology graduate students Jordon Wang and Xiao Xu; surgical postdoctoral scholar Samantha Brugmann, PhD; research assistant Henry Goodnough; and Jill Helms, PhD, associate professor of surgery.

The study also included contributions from researchers at the Weizmann Institute of Science and UC-Davis.

This research was supported by the National Institutes of Health, the Beckman Center Interdisciplinary Translational Research Program, the Damon Runyon Cancer Research Foundation and the Emerald Foundation.


Stanford Medicine integrates research, medical education and health care at its three institutions - Stanford University School of Medicine, Stanford Health Care (formerly Stanford Hospital & Clinics), and Lucile Packard Children's Hospital Stanford. For more information, please visit the Office of Communication & Public Affairs site at http://mednews.stanford.edu.

Leading in Precision Health

Stanford Medicine is leading the biomedical revolution in precision health, defining and developing the next generation of care that is proactive, predictive and precise. 

A Legacy of Innovation

Stanford Medicine's unrivaled atmosphere of breakthrough thinking and interdisciplinary collaboration has fueled a long history of achievements.