Current Research and Scholarly Interests
The Pollack lab uses genomic approaches to investigate the pathobiology of human cancer, and to identify strategies for improved diagnosis, prognostication and treatment. Technologies include deep sequencing (exomes, genomes, transcriptomes, and cistromes), DNA microarrays, RNAi screens, genome editing, and single-cell analysis. Studies span several tumor types, including prostate, breast, lung, colon and pancreatic cancer. Rather than study model organisms, we work directly with human cancer specimens and patient-derived cells.
Active areas of investigation include: (1) Defining prostate cancer subtypes, intratumor heterogeneity and genome evolution, to distinguish indolent from aggressive disease; (2) Discovering clinically-relevant gene-expression signatures and cancer biomarkers; (3) Identifying recurring genomic structural alterations in various cancer types, to discover novel cancer genes; (4) Understanding the role of altered chromatin remodeling and amplified "lineage-survival" transcription factors in tumorigenesis; (5) Investigating the mechanisms underlying genomic instability and the shaping of cancer genomes; (6) Applying genomic approaches to study uncommon neoplasias, as well as benign disease processes; (7) Generating patient-derived cell culture models by conditional reprogramming, to enable studies of specific cancer genotypes; (8) Exploring cell and tissue heterogeneity through single-cell genomics.