Featured Publications

 

Doan, A. E., Mueller, K. P., Chen, A. Y., Rouin, G. T., Chen, Y., Daniel, B., ... & Mackall, C.L., Weber, E. W. (2024). FOXO1 is a master regulator of memory programming in CAR T cells. Nature, 1-8.

Tieu, V., Sotillo, E., Bjelajac, J.R., Chen, C., Malipatlolla, M., Guerrero, J.A., ... & Mackall, C.L., Qi, L.S. (2024). A versatile CRISPR-Cas13d platform for multiplexed transcriptomic regulation and metabolic engineering in primary human T cells. Cell.

Klysz, D.D., Fowler, C., Malipatlolla, M., Stuani, L., Freitas, K.A., Chen, Y., ... & Mackall, C.L. (2023). Inosine Induces Stemness Features in CAR T cells and Enhances Potency. Cancer Cell.

Kaczanowska, S.*, Murty, T.*, Alimadadi, A.*, Contreras, C. F., Duault, C., Subrahmanyam, P. B., ... & Mackall, C.L., Ramakrishna, S., Kaplan, R. N. (2023). Immune determinants of CAR-T cell expansion in solid tumor patients receiving GD2 CAR-T cell therapy. Cancer Cell, 42(1), P35-51.E8.

Balke-Want, H., Keerthi, V., Gkitsas, N., Mancini, A. G., Kurgan, G. L., Fowler, C., ... & Mackall, C.L., Feldman, S. A. (2023). Homology-independent targeted insertion (HITI) enables guided CAR knock-in and efficient clinical scale CAR-T cell manufacturing. Molecular Cancer, 22(1), 1-16.

Labanieh, L., Mackall, C.L. (2023) CAR immune cells: design principles, resistance and the next generation. Nature, 614, 635–648.

Freitas, K. A.*, Belk, J. A.*, Sotillo, E., Quinn, P. J., Ramello, M. C., Malipatlolla, M., ... & Mackall, C. L. (2022). Enhanced T cell effector activity by targeting the Mediator kinase module. Science378(6620).

Good, Z., Spiegel, J.Y., Sahaf, B., Malipatlolla, M., Ehlinger, Z., Kurra, S.... & Mackall, C. L. (2022). Post-infusion CAR TReg cells identify patients resistant to CD19-CAR therapy. Nature Medicine28(9), 1860-1871.

Labanieh, L., Majzner, R. G., Klysz, D., Sotillo, E., Fisher, C. J., Vilches-Moure, J. G., ... & Mackall, C. L. (2022). Enhanced safety and efficacy of protease-regulated CAR-T cell receptors. Cell185(10), 1745-1763.

Majzner, R. G., Ramakrishna, S., Yeom, K. W., Patel, S., Chinnasamy, H., Schultz, L. M., Richards, R. M., Jiang, L., Barsan, V., Mancusi, R., Geraghty, A. C., Good, Z., Mochizuki, A. Y., Gillespie, S. M., Toland, A., Mahdi, J., Reschke, A., Nie, E., Chau, I. J., Rotiroti, M. C., … & Monje, M. (2022). GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. Nature, 603(7903), 934-941.

Theruvath, J., Menard, M., Smith, B., Linde, M. H., Coles, G. L., Dalton, G. N., Wu, W., Kiru, L., Delaidelli, A., Sotillo, E., Silberstein, J. L., Geraghty, A. C., Banuelos, A., Radosevich, M. T., Dhingra, S., Heitzeneder, S., Tousley, A., Lattin, J., Xu, P., Huang, J., … & Majzner, R. G. (2022). Anti-GD2 synergizes with CD47 blockade to mediate tumor eradication. Nature Medicine28(2), 333-344.

Heitzeneder, S., Bosse, K. R., Zhu, Z., Zhelev, D., Majzner, R. G., Radosevich, M. T., Dhingra, S., Sotillo, E., Buongervino, S., Pascual-Pasto, G., Garrigan, E., Xu, P., Huang, J., Salzer, B., Delaidelli, A., Raman, S., Cui, H., Martinez, B., Bornheimer, S. J., Sahaf, B., … & Mackall, C. L. (2021). GPC2-CAR T cells tuned for low antigen density mediate potent activity against neuroblastoma without toxicity. Cancer Cell, S1535-6108(21)00658-9.

Richards, R. M., Zhao, F., Freitas, K. A., Parker, K. R., Xu, P., Fan, A., Sotillo, E., Daugaard, M., Oo, H. Z., Liu, J., Hong, W.-J., Sorensen, P. H., Chang, H. Y., Satpathy, A. T., Majzner, R. G., Majeti, R., & Mackall, C. L. (2021). Not-gated CD93 CAR T cells effectively target AML with minimized endothelial cross-reactivity. Blood Cancer Discovery2(6), 648.

Gennert, D. G., Lynn, R. C., Granja, J. M., Weber, E. W., Mumbach, M. R., Zhao, Y., Duren, Z., Sotillo, E., Greenleaf, W. J., Wong, W. H., Satpathy, A. T., Mackall, C. L., & Chang, H. Y. (2021). Dynamic chromatin regulatory landscape of human CAR T cell exhaustion. Proceedings of the National Academy of Sciences of the United States of America, 118(30), e2104758118.

Weber, E. W., Parker, K. R., Sotillo, E., Lynn, R. C., Anbunathan, H., Lattin, J., Good, Z., Belk, J. A., Daniel, B., Klysz, D., Malipatlolla, M., Xu, P., Bashti, M., Heitzeneder, S., Labanieh, L., Vandris, P., Majzner, R. G., Qi, Y., Sandor, K., Chen, L. C., … & Mackall, C. L. (2021). Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science, 372(6537), eaba1786.

Theruvath, J., Sotillo, E., Mount, C. W., Graef, C. M., Delaidelli, A., Heitzeneder, S., Labanieh, L., Dhingra, S., Leruste, A., Majzner, R. G., Xu, P., Mueller, S., Yecies, D. W., Finetti, M. A., Williamson, D., Johann, P. D., Kool, M., Pfister, S., Hasselblatt, M., Frühwald, M. C., … & Mackall, C. L. (2020). Locoregionally administered B7-H3-targeted CAR T cells for treatment of atypical teratoid/rhabdoid tumors. Nature Medicine, 26(5), 712–719.

Weber, E. W., Maus, M. V., & Mackall, C. L. (2020). The Emerging Landscape of Immune Cell Therapies. Cell, 181(1), 46–62. 

Majzner, R. G., Rietberg, S. P., Sotillo, E., Dong, R., Vachharajani, V. T., Labanieh, ... & Mackall, C. L. (2020). Tuning the Antigen Density Requirement for CAR T-cell Activity. Cancer Discovery, 10(5), 702–723.

Murty, S.*, Labanieh, L.*, Murty, T., Gowrishankar, G., Haywood, T., Alam, I. S., ... & Mackall, C. L., Gambhir, S. S. (2020). PET reporter gene imaging and ganciclovir-mediated ablation of chimeric antigen receptor T cells in solid tumors. Cancer Research80(21), 4731-4740.

Lynn, R. C., Weber, E. W., Sotillo, E., Gennert, D., Xu, P., Good, Z., Anbunathan, H., Lattin, J., Jones, R., Tieu, V., Nagaraja, S., Granja, J., de Bourcy, C., Majzner, R., Satpathy, A. T., Quake, S. R., Monje, M., Chang, H. Y., & Mackall, C. L. (2019). c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature, 576(7786), 293–300.

Majzner, R. G., & Mackall, C. L. (2019). Clinical lessons learned from the first leg of the CAR T cell journey. Nature Medicine, 25(9), 1341–1355.

Majzner, R. G., Theruvath, J. L., Nellan, A., Heitzeneder, S., Cui, Y., Mount, C. W., Rietberg, S. P., Linde, M. H., Xu, P., Rota, C., Sotillo, E., Labanieh, L., Lee, D. W., Orentas, R. J., Dimitrov, D. S., Zhu, Z., Croix, B. S., Delaidelli, A., Sekunova, A., Bonvini, E., … & Mackall, C. L. (2019). CAR T Cells Targeting B7-H3, a Pan-Cancer Antigen, Demonstrate Potent Preclinical Activity Against Pediatric Solid Tumors and Brain Tumors. Clinical Cancer Research25(8), 2560–2574.

Labanieh, L., Majzner, R. G., & Mackall, C. L. (2018). Programming CAR-T cells to kill cancer. Nature Biomedical Engineering2(6), 377–391.

Long, A. H., Haso, W. M., Shern, J. F., Wanhainen, K. M., Murgai, M., Ingaramo, M., Smith, J. P., Walker, A. J., Kohler, M. E., Venkateshwara, V. R., Kaplan, R. N., Patterson, G. H., Fry, T. J., Orentas, R. J., & Mackall, C. L. (2015). 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nature Medicine, 21(6), 581–590.

All Publications

Publications

  • Inosine induces stemness features in CAR-T cells and enhances potency. Cancer cell Klysz, D. D., Fowler, C., Malipatlolla, M., Stuani, L., Freitas, K. A., Chen, Y., Meier, S., Daniel, B., Sandor, K., Xu, P., Huang, J., Labanieh, L., Keerthi, V., Leruste, A., Bashti, M., Mata-Alcazar, J., Gkitsas, N., Guerrero, J. A., Fisher, C., Patel, S., Asano, K., Patel, S., Davis, K. L., Satpathy, A. T., Feldman, S. A., Sotillo, E., Mackall, C. L. 2024

    Abstract

    Adenosine (Ado) mediates immune suppression in the tumor microenvironment and exhausted CD8+ CAR-T cells express CD39 and CD73, which mediate proximal steps in Ado generation. Here, we sought to enhance CAR-T cell potency by knocking out CD39, CD73, or adenosine receptor 2a (A2aR) but observed only modest effects. In contrast, overexpression of Ado deaminase (ADA-OE), which metabolizes Ado to inosine (INO), induced stemness and enhanced CAR-T functionality. Similarly, CAR-T cell exposure to INO augmented function and induced features of stemness. INO induced profound metabolic reprogramming, diminishing glycolysis, increasing mitochondrial and glycolytic capacity, glutaminolysis and polyamine synthesis, and reprogrammed the epigenome toward greater stemness. Clinical scale manufacturing using INO generated enhanced potency CAR-T cell products meeting criteria for clinical dosing. These results identify INO as a potent modulator of CAR-T cell metabolism and epigenetic stemness programming and deliver an enhanced potency platform for cell manufacturing.

    View details for DOI 10.1016/j.ccell.2024.01.002

    View details for PubMedID 38278150

  • Unanswered questions following reports of secondary malignancies after CAR-T cell therapy. Nature medicine Levine, B. L., Pasquini, M. C., Connolly, J. E., Porter, D. L., Gustafson, M. P., Boelens, J. J., Horwitz, E. M., Grupp, S. A., Maus, M. V., Locke, F. L., Ciceri, F., Ruggeri, A., Snowden, J., Heslop, H. E., Mackall, C. L., June, C. H., Sureda, A. M., Perales, M. 2024

    View details for DOI 10.1038/s41591-023-02767-w

    View details for PubMedID 38195751

  • Immune determinants of CAR-T cell expansion in solid tumor patients receiving GD2 CAR-T cell therapy. Cancer cell Kaczanowska, S., Murty, T., Alimadadi, A., Contreras, C. F., Duault, C., Subrahmanyam, P. B., Reynolds, W., Gutierrez, N. A., Baskar, R., Wu, C. J., Michor, F., Altreuter, J., Liu, Y., Jhaveri, A., Duong, V., Anbunathan, H., Ong, C., Zhang, H., Moravec, R., Yu, J., Biswas, R., Van Nostrand, S., Lindsay, J., Pichavant, M., Sotillo, E., Bernstein, D., Carbonell, A., Derdak, J., Klicka-Skeels, J., Segal, J. E., Dombi, E., Harmon, S. A., Turkbey, B., Sahaf, B., Bendall, S., Maecker, H., Highfill, S. L., Stroncek, D., Glod, J., Merchant, M., Hedrick, C. C., Mackall, C. L., Ramakrishna, S., Kaplan, R. N. 2023

    Abstract

    Chimeric antigen receptor T cells (CAR-Ts) have remarkable efficacy in liquid tumors, but limited responses in solid tumors. We conducted a Phase I trial (NCT02107963) of GD2 CAR-Ts (GD2-CAR.OX40.28.z.iC9), demonstrating feasibility and safety of administration in children and young adults with osteosarcoma and neuroblastoma. Since CAR-T efficacy requires adequate CAR-T expansion, patients were grouped into good or poor expanders across dose levels. Patient samples were evaluated by multi-dimensional proteomic, transcriptomic, and epigenetic analyses. T cell assessments identified naive T cells in pre-treatment apheresis associated with good expansion, and exhausted T cells in CAR-T products with poor expansion. Myeloid cell assessment identified CXCR3+ monocytes in pre-treatment apheresis associated with good expansion. Longitudinal analysis of post-treatment samples identified increased CXCR3- classical monocytes in all groups as CAR-T numbers waned. Together, our data uncover mediators of CAR-T biology and correlates of expansion that could be utilized to advance immunotherapies for solid tumor patients.

    View details for DOI 10.1016/j.ccell.2023.11.011

    View details for PubMedID 38134936

  • Directed Evolution of Genetically Encoded LYTACs for Cell-Mediated Delivery. bioRxiv : the preprint server for biology Yang, J. L., Yamada-Hunter, S. A., Labanieh, L., Sotillo, E., Cheah, J. S., Roberts, D. S., Mackall, C. L., Ting, A. Y., Bertozzi, C. R. 2023

    Abstract

    Lysosome-targeting chimeras (LYTACs) are a promising therapeutic modality to drive the degradation of extracellular proteins. However, early versions of LYTAC contain synthetic glycopeptides that cannot be genetically encoded. Here we present our designs for a fully genetically encodable LYTAC (GELYTAC), making our tool compatible with integration into therapeutic cells for targeted delivery at diseased sites. To achieve this, we replaced the glycopeptide portion of LYTACs with the protein insulin like growth factor 2 (IGF2). After showing initial efficacy with wild type IGF2, we increased the potency of GELYTAC using directed evolution. Subsequently, we demonstrated that our engineered GELYTAC construct not only secretes from HEK293T cells but also from human primary T-cells to drive the uptake of various targets into receiver cells. Immune cells engineered to secrete GELYTAC thus represent a promising avenue for spatially-selective targeted protein degradation.

    View details for DOI 10.1101/2023.11.14.567117

    View details for PubMedID 38014030

    View details for PubMedCentralID PMC10680704

  • Antigen density quantification of cell-surface immunotherapy targets by flow cytometry: Multi-antigen assay of neuroblastoma bone marrow metastasis. STAR protocols Radosevich, M. T., Bornheimer, S. J., Mehrpouryan, M., Sahaf, B., Oak, J. S., Mackall, C. L., Heitzeneder, S. 2023; 4 (4): 102709

    Abstract

    The central role of target antigen density on chimeric antigen receptor T cell potency highlights the need for accurate measurement of antigen levels on clinical tumor samples. Here, we present a protocol for quantifying antigen density for six cell-surface antigens on neuroblastoma cells metastatic to bone marrow. We describe steps for patient sample acquisition, flow cytometry panel development, instrument setup, and compensation and detail procedures for running clinical samples and data analysis. For complete details on the use and execution of this protocol, please refer to Heitzeneder et al. (2022).1.

    View details for DOI 10.1016/j.xpro.2023.102709

    View details for PubMedID 37967014