Bio

Clinical Focus


  • Pulmonary Disease
  • Critical Care

Academic Appointments


Professional Education


  • Fellowship:Massachusetts General Hosp Harvard Med School (2009) MA
  • Board Certification: Critical Care Medicine, American Board of Internal Medicine (2007)
  • Board Certification: Pulmonary Disease, American Board of Internal Medicine (2006)
  • Residency:Brigham and Women's Hospital Harvard Medical School (2004) MA
  • Internship:Brigham and Women's Hospital Harvard Medical School (2002) MA
  • Board Certification: Internal Medicine, American Board of Internal Medicine (2004)
  • Medical Education:Harvard Medical School (2001) MA

Publications

Journal Articles


  • Metabolomic Derangements Are Associated with Mortality in Critically Ill Adult Patients PLOS ONE Rogers, A. J., McGeachie, M., Baron, R. M., Gazourian, L., Haspel, J. A., Nakahira, K., Fredenburgh, L. E., Hunninghake, G. M., Raby, B. A., Matthay, M. A., Otero, R. M., Fowler, V. G., Rivers, E. P., Woods, C. W., Kingsmore, S., Langley, R. J., Choi, A. M. 2014; 9 (1)

    Abstract

    To identify metabolomic biomarkers predictive of Intensive Care Unit (ICU) mortality in adults.Comprehensive metabolomic profiling of plasma at ICU admission to identify biomarkers associated with mortality has recently become feasible.We performed metabolomic profiling of plasma from 90 ICU subjects enrolled in the BWH Registry of Critical Illness (RoCI). We tested individual metabolites and a Bayesian Network of metabolites for association with 28-day mortality, using logistic regression in R, and the CGBayesNets Package in MATLAB. Both individual metabolites and the network were tested for replication in an independent cohort of 149 adults enrolled in the Community Acquired Pneumonia and Sepsis Outcome Diagnostics (CAPSOD) study.We tested variable metabolites for association with 28-day mortality. In RoCI, nearly one third of metabolites differed among ICU survivors versus those who died by day 28 (N = 57 metabolites, p<.05). Associations with 28-day mortality replicated for 31 of these metabolites (with p<.05) in the CAPSOD population. Replicating metabolites included lipids (N = 14), amino acids or amino acid breakdown products (N = 12), carbohydrates (N = 1), nucleotides (N = 3), and 1 peptide. Among 31 replicated metabolites, 25 were higher in subjects who progressed to die; all 6 metabolites that are lower in those who die are lipids. We used Bayesian modeling to form a metabolomic network of 7 metabolites associated with death (gamma-glutamylphenylalanine, gamma-glutamyltyrosine, 1-arachidonoylGPC(20:4), taurochenodeoxycholate, 3-(4-hydroxyphenyl) lactate, sucrose, kynurenine). This network achieved a 91% AUC predicting 28-day mortality in RoCI, and 74% of the AUC in CAPSOD (p<.001 in both populations).Both individual metabolites and a metabolomic network were associated with 28-day mortality in two independent cohorts. Metabolomic profiling represents a valuable new approach for identifying novel biomarkers in critically ill patients.

    View details for DOI 10.1371/journal.pone.0087538

    View details for Web of Science ID 000330617100092

    View details for PubMedID 24498130

  • Circulating Mitochondrial DNA in Patients in the ICU as a Marker of Mortality: Derivation and Validation PLOS MEDICINE Nakahira, K., Kyung, S., Rogers, A. J., Gazourian, L., Youn, S., Massaro, A. F., Quintana, C., Osorio, J. C., Wang, Z., Zhao, Y., Lawler, L. A., Christie, J. D., Meyer, N. J., Mc Causland, F. R., Waikar, S. S., Waxman, A. B., Chung, R. T., Bueno, R., Rosas, I. O., Fredenburgh, L. E., Baron, R. M., Christiani, D. C., Hunninghake, G. M., Choi, A. M. 2013; 10 (12)

    Abstract

    Mitochondrial DNA (mtDNA) is a critical activator of inflammation and the innate immune system. However, mtDNA level has not been tested for its role as a biomarker in the intensive care unit (ICU). We hypothesized that circulating cell-free mtDNA levels would be associated with mortality and improve risk prediction in ICU patients.Analyses of mtDNA levels were performed on blood samples obtained from two prospective observational cohort studies of ICU patients (the Brigham and Women's Hospital Registry of Critical Illness [BWH RoCI, n = 200] and Molecular Epidemiology of Acute Respiratory Distress Syndrome [ME ARDS, n = 243]). mtDNA levels in plasma were assessed by measuring the copy number of the NADH dehydrogenase 1 gene using quantitative real-time PCR. Medical ICU patients with an elevated mtDNA level (≥3,200 copies/µl plasma) had increased odds of dying within 28 d of ICU admission in both the BWH RoCI (odds ratio [OR] 7.5, 95% CI 3.6-15.8, p = 1×10(-7)) and ME ARDS (OR 8.4, 95% CI 2.9-24.2, p = 9×10(-5)) cohorts, while no evidence for association was noted in non-medical ICU patients. The addition of an elevated mtDNA level improved the net reclassification index (NRI) of 28-d mortality among medical ICU patients when added to clinical models in both the BWH RoCI (NRI 79%, standard error 14%, p<1×10(-4)) and ME ARDS (NRI 55%, standard error 20%, p = 0.007) cohorts. In the BWH RoCI cohort, those with an elevated mtDNA level had an increased risk of death, even in analyses limited to patients with sepsis or acute respiratory distress syndrome. Study limitations include the lack of data elucidating the concise pathological roles of mtDNA in the patients, and the limited numbers of measurements for some of biomarkers.Increased mtDNA levels are associated with ICU mortality, and inclusion of mtDNA level improves risk prediction in medical ICU patients. Our data suggest that mtDNA could serve as a viable plasma biomarker in medical ICU patients.

    View details for DOI 10.1371/journal.pmed.1001577

    View details for Web of Science ID 000330534300016

    View details for PubMedID 24391478

  • An integrated clinico-metabolomic model improves prediction of death in sepsis. Science translational medicine Langley, R. J., Tsalik, E. L., Velkinburgh, J. C., Glickman, S. W., Rice, B. J., Wang, C., Chen, B., Carin, L., Suarez, A., Mohney, R. P., Freeman, D. H., Wang, M., You, J., Wulff, J., Thompson, J. W., Moseley, M. A., Reisinger, S., Edmonds, B. T., Grinnell, B., Nelson, D. R., Dinwiddie, D. L., Miller, N. A., Saunders, C. J., Soden, S. S., Rogers, A. J., Gazourian, L., Fredenburgh, L. E., Massaro, A. F., Baron, R. M., Choi, A. M., Corey, G. R., Ginsburg, G. S., Cairns, C. B., Otero, R. M., Fowler, V. G., Rivers, E. P., Woods, C. W., Kingsmore, S. F. 2013; 5 (195): 195ra95

    Abstract

    Sepsis is a common cause of death, but outcomes in individual patients are difficult to predict. Elucidating the molecular processes that differ between sepsis patients who survive and those who die may permit more appropriate treatments to be deployed. We examined the clinical features and the plasma metabolome and proteome of patients with and without community-acquired sepsis, upon their arrival at hospital emergency departments and 24 hours later. The metabolomes and proteomes of patients at hospital admittance who would ultimately die differed markedly from those of patients who would survive. The different profiles of proteins and metabolites clustered into the following groups: fatty acid transport and ?-oxidation, gluconeogenesis, and the citric acid cycle. They differed consistently among several sets of patients, and diverged more as death approached. In contrast, the metabolomes and proteomes of surviving patients with mild sepsis did not differ from survivors with severe sepsis or septic shock. An algorithm derived from clinical features together with measurements of five metabolites predicted patient survival. This algorithm may help to guide the treatment of individual patients with sepsis.

    View details for PubMedID 23884467

  • Copy number variation genotyping using family information BMC BIOINFORMATICS Chu, J., Rogers, A., Ionita-Laza, I., Darvishi, K., Mills, R. E., Lee, C., Raby, B. A. 2013; 14

    Abstract

    In recent years there has been a growing interest in the role of copy number variations (CNV) in genetic diseases. Though there has been rapid development of technologies and statistical methods devoted to detection in CNVs from array data, the inherent challenges in data quality associated with most hybridization techniques remains a challenging problem in CNV association studies.To help address these data quality issues in the context of family-based association studies, we introduce a statistical framework for the intensity-based array data that takes into account the family information for copy-number assignment. The method is an adaptation of traditional methods for modeling SNP genotype data that assume Gaussian mixture model, whereby CNV calling is performed for all family members simultaneously and leveraging within family-data to reduce CNV calls that are incompatible with Mendelian inheritance while still allowing de-novo CNVs. Applying this method to simulation studies and a genome-wide association study in asthma, we find that our approach significantly improves CNV calls accuracy, and reduces the Mendelian inconsistency rates and false positive genotype calls. The results were validated using qPCR experiments.In conclusion, we have demonstrated that the use of family information can improve the quality of CNV calling and hopefully give more powerful association test of CNVs.

    View details for DOI 10.1186/1471-2105-14-157

    View details for Web of Science ID 000319743600001

    View details for PubMedID 23656838

  • Copy number variation prevalence in known asthma genes and their impact on asthma susceptibility CLINICAL AND EXPERIMENTAL ALLERGY Rogers, A. J., Chu, J., Darvishi, K., Ionita-Laza, I., Lehmann, H., Mills, R., Lee, C., Raby, B. A. 2013; 43 (4): 455-462

    Abstract

    Genetic studies have identified numerous genes reproducibly associated with asthma, yet these studies have focussed almost entirely on single nucleotide polymorphisms (SNPs), and virtually ignored another highly prevalent form of genetic variation: Copy Number Variants (CNVs).To survey the prevalence of CNVs in genes previously associated with asthma, and to assess whether CNVs represent the functional asthma-susceptibility variants at these loci.We genotyped 383 asthmatic trios participating in the Childhood Asthma Management Program (CAMP) using a competitive genomic hybridization (CGH) array designed to interrogate 20 092 CNVs. To ensure comprehensive assessment of all potential asthma candidate genes, we purposely used liberal asthma gene inclusion criteria, resulting in consideration of 270 candidate genes previously implicated in asthma. We performed statistical testing using FBAT-CNV.Copy number variation in asthma candidate genes was prevalent, with 21% of tested genes residing near or within one of 69 CNVs. In six instances, the complete candidate gene sequence resides within the CNV boundaries. On average, asthmatic probands carried six asthma-candidate CNVs (range 1-29). However, the vast majority of identified CNVs were of rare frequency (< 5%) and were not statistically associated with asthma. Modest evidence for association with asthma was observed for 2 CNVs near NOS1 and SERPINA3. Linkage disequilibrium analysis suggests that CNV effects are unlikely to explain previously detected SNP associations with asthma.Although a substantial proportion of asthma-susceptibility genes harbour polymorphic CNVs, the majority of these variants do not confer increased asthma risk. The lack of linkage disequilibrium (LD) between CNVs and asthma-associated SNPs suggests that these CNVs are unlikely to represent the functional variant responsible for most known asthma associations.

    View details for DOI 10.1111/cea.12060

    View details for Web of Science ID 000316623800010

    View details for PubMedID 23517041

  • Inflammasome-regulated Cytokines Are Critical Mediators of Acute Lung Injury AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE Dolinay, T., Kim, Y. S., Howrylak, J., Hunninghake, G. M., An, C. H., Fredenburgh, L., Massaro, A. F., Rogers, A., Gazourian, L., Nakahira, K., Haspel, J. A., Landazury, R., Eppanapally, S., Christie, J. D., Meyer, N. J., Ware, L. B., Christiani, D. C., Ryter, S. W., Baron, R. M., Choi, A. M. 2012; 185 (11): 1225-1234

    Abstract

    Despite advances in clinical management, there are currently no reliable diagnostic and therapeutic targets for acute respiratory distress syndrome (ARDS). The inflammasome/caspase-1 pathway regulates the maturation and secretion of proinflammatory cytokines (e.g., IL-18). IL-18 is associated with injury in animal models of systemic inflammation.We sought to determine the contribution of the inflammasome pathway in experimental acute lung injury and human ARDS.We performed comprehensive gene expression profiling on peripheral blood from patients with critical illness. Gene expression changes were assessed using real-time polymerase chain reaction, and IL-18 levels were measured in the plasma of the critically ill patients. Wild-type mice or mice genetically deficient in IL-18 or caspase-1 were mechanically ventilated using moderate tidal volume (12 ml/kg). Lung injury parameters were assessed in lung tissue, serum, and bronchoalveolar lavage fluid.In mice, mechanical ventilation enhanced IL-18 levels in the lung, serum, and bronchoalveolar lavage fluid. IL-18-neutralizing antibody treatment, or genetic deletion of IL-18 or caspase-1, reduced lung injury in response to mechanical ventilation. In human patients with ARDS, inflammasome-related mRNA transcripts (CASP1, IL1B, and IL18) were increased in peripheral blood. In samples from four clinical centers, IL-18 was elevated in the plasma of patients with ARDS (sepsis or trauma-induced ARDS) and served as a novel biomarker of intensive care unit morbidity and mortality.The inflammasome pathway and its downstream cytokines play critical roles in ARDS development.

    View details for DOI 10.1164/rccm.201201-0003OC

    View details for Web of Science ID 000304384600016

    View details for PubMedID 22461369

  • The CD4+ T-cell transcriptome and serum IgE in asthma: IL17RB and the role of sex. BMC pulmonary medicine Hunninghake, G. M., Chu, J., Sharma, S. S., Cho, M. H., Himes, B. E., Rogers, A. J., Murphy, A., Carey, V. J., Raby, B. A. 2011; 11: 17-?

    Abstract

    The relationships between total serum IgE levels and gene expression patterns in peripheral blood CD4+ T cells (in all subjects and within each sex specifically) are not known.Peripheral blood CD4+ T cells from 223 participants from the Childhood Asthma Management Program (CAMP) with simultaneous measurement of IgE. Total RNA was isolated, and expression profiles were generated with Illumina HumanRef8 v2 BeadChip arrays. Modeling of the relationship between genome-wide gene transcript levels and IgE levels was performed in all subjects, and stratified by sex.Among all subjects, significant evidence for association between gene transcript abundance and IgE was identified for a single gene, the interleukin 17 receptor B (IL17RB), explaining 12% of the variance (r2) in IgE measurement (p value = 7 × 10(-7), 9 × 10(-3) after adjustment for multiple testing). Sex stratified analyses revealed that the correlation between IL17RB and IgE was restricted to males only (r2 = 0.19, p value = 8 × 10(-8); test for sex-interaction p < 0.05). Significant correlation between gene transcript abundance and IgE level was not found in females. Additionally we demonstrated substantial sex-specific differences in IgE when considering multi-gene models, and in canonical pathway analyses of IgE level.Our results indicate that IL17RB may be the only gene expressed in CD4+ T cells whose transcript measurement is correlated with the variation in IgE level in asthmatics. These results provide further evidence sex may play a role in the genomic regulation of IgE.

    View details for DOI 10.1186/1471-2466-11-17

    View details for PubMedID 21473777

  • On the Genome-Wide Analysis of Copy Number Variants in Family-Based Designs: Methods for Combining Family-Based and Population-Based Information for Testing Dichotomous or Quantitative Traits, or Completely Ascertained Samples GENETIC EPIDEMIOLOGY Murphy, A., Won, S., Rogers, A., Chu, J., Raby, B. A., Lange, C. 2010; 34 (6): 582-590

    Abstract

    We propose a new approach for the analysis of copy number variants (CNVs)for genome-wide association studies in family-based designs. Our new overall association test combines the between-family component and the within-family component of the family-based data so that the new test statistic is fully efficient and, at the same time, maintains robustness against population-admixture and stratification, like classical family-based association tests that are based only on the within-family component. Although all data are incorporated into the test statistic, an adjustment for genetic confounding is not needed, even for the between-family component. The new test statistic is valid for testing either quantitative or dichotomous phenotypes. If external CNV data are available, the approach can also be applied to completely ascertained samples. Similar to the approach by Ionita-Laza et al. ([2008]. Genet Epidemiol 32:273-284), the proposed test statistic does not require a CNV-calling algorithm and is based directly on the CNV probe intensities. We show, via simulation studies, that our methodology increases the power of the FBAT statistic to levels comparable to those of population-based designs. The advantages of the approach in practice are demonstrated by an application to a genome-wide association study for body mass index.

    View details for DOI 10.1002/gepi.20515

    View details for Web of Science ID 000282038200008

    View details for PubMedID 20718041

  • A Role for Wnt Signaling Genes in the Pathogenesis of Impaired Lung Function in Asthma AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE Sharma, S., Tantisira, K., Carey, V., Murphy, A. J., Lasky-Su, J., Celedon, J. C., Lazarus, R., Klanderman, B., Rogers, A., Soto-Quiros, M., Avila, L., Mariani, T., Gaedigk, R., Leeders, S., Torday, J., Warburton, D., Raby, B., Weiss, S. T. 2010; 181 (4): 328-336

    Abstract

    Animal models demonstrate that aberrant gene expression in utero can result in abnormal pulmonary phenotypes.We sought to identify genes that are differentially expressed during in utero airway development and test the hypothesis that variants in these genes influence lung function in patients with asthma.Stage 1 (Gene Expression): Differential gene expression analysis across the pseudoglandular (n = 27) and canalicular (n = 9) stages of human lung development was performed using regularized t tests with multiple comparison adjustments. Stage 2 (Genetic Association): Genetic association analyses of lung function (FEV(1), FVC, and FEV(1)/FVC) for variants in five differentially expressed genes were conducted in 403 parent-child trios from the Childhood Asthma Management Program (CAMP). Associations were replicated in 583 parent-child trios from the Genetics of Asthma in Costa Rica study.Of the 1,776 differentially expressed genes between the pseudoglandular (gestational age: 7-16 wk) and the canalicular (gestational age: 17-26 wk) stages, we selected 5 genes in the Wnt pathway for association testing. Thirteen single nucleotide polymorphisms in three genes demonstrated association with lung function in CAMP (P < 0.05), and associations for two of these genes were replicated in the Costa Ricans: Wnt1-inducible signaling pathway protein 1 with FEV(1) (combined P = 0.0005) and FVC (combined P = 0.0004), and Wnt inhibitory factor 1 with FVC (combined P = 0.003) and FEV(1)/FVC (combined P = 0.003).Wnt signaling genes are associated with impaired lung function in two childhood asthma cohorts. Furthermore, gene expression profiling of human fetal lung development can be used to identify genes implicated in the pathogenesis of lung function impairment in individuals with asthma.

    View details for DOI 10.1164/rccm.200907-1009OC

    View details for Web of Science ID 000274637100008

    View details for PubMedID 19926868

  • The interaction of glutathione S-transferase M1-null variants with tobacco smoke exposure and the development of childhood asthma CLINICAL AND EXPERIMENTAL ALLERGY Rogers, A. J., Brasch-Andersen, C., Ionita-Laza, I., Murphy, A., Sharma, S., Klanderman, B. J., Raby, B. A. 2009; 39 (11): 1721-1729

    Abstract

    The glutathione S-transferase M1 (GSTM1)-null variant is a common copy number variant associated with adverse pulmonary outcomes, including asthma and airflow obstruction, with evidence of important gene-by-environment interactions with exposures to oxidative stress.To explore the joint interactive effects of GSTM1 copy number and tobacco smoke exposure on the development of asthma and asthma-related phenotypes in a family-based cohort of childhood asthmatics.We performed quantitative PCR-based genotyping for GSTM1 copy number in children of self-reported white ancestry with mild to moderate asthma in the Childhood Asthma Management Program. Questionnaire data regarding intrauterine (IUS) and post-natal, longitudinal smoke exposure were available. We performed both family-based and population-based tests of association for the interaction between GSTM1 copy number and tobacco smoke exposure with asthma and asthma-related phenotypes.Associations of GSTM1-null variants with asthma (P=0.03), younger age of asthma symptom onset (P=0.03), and greater airflow obstruction (reduced forced expiratory volume in 1 s / forced vital capacity, P=0.01) were observed among the 50 children (10% of the cohort) with exposure to IUS. In contrast, no associations were observed between GSTM1-null variants and asthma-related phenotypes among children without IUS exposure. Presence of at least one copy of GSTM1 conferred protection.These findings support an important gene-by-environment interaction between two common factors: increased risk of asthma and asthma-related phenotypes conferred by GSTM1-null homozygosity in children is restricted to those with a history of IUS exposure.

    View details for DOI 10.1111/j.1365-2222.2009.03372.x

    View details for Web of Science ID 000271001600014

    View details for PubMedID 19860819

  • Predictors of poor response during asthma therapy differ with definition of outcome PHARMACOGENOMICS Rogers, A. J., Tantisira, K. G., Fuhlbrigge, A. L., Litonjua, A. A., Lasky-Su, J. A., Szefler, S. J., Strunk, R. C., Zeiger, R. S., Weiss, S. T. 2009; 10 (8): 1231-1242

    Abstract

    To evaluate phenotypic and genetic variables associated with a poor long-term response to inhaled corticosteroid therapy for asthma, based independently on lung function changes or asthma exacerbations.We tested 17 phenotypic variables and polymorphisms in FCER2 and CRHR1 in 311 children (aged 5-12 years) randomized to a 4-year course of inhaled corticosteroid during the Childhood Asthma Management Program (CAMP).Predictors of recurrent asthma exacerbations are distinct from predictors of poor lung function response. A history of prior asthma exacerbations, younger age and a higher IgE level (p < 0.05) are associated with recurrent exacerbations. By contrast, lower bronchodilator response to albuterol and the minor alleles of RS242941 in CRHR1 and T2206C in FCER2 (p < 0.05) are associated with poor lung function response. Poor lung function response does not increase the risk of exacerbations and vice versa (p = 0.72).Genetic and phenotypic predictors of a poor long-term response to inhaled corticosteroids differ markedly depending on definition of outcome (based on exacerbations vs lung function). These findings are important in comparing outcomes of clinical trials and in designing future pharmacogenetic studies.

    View details for DOI 10.2217/PGS.09.86

    View details for Web of Science ID 000269408100011

    View details for PubMedID 19663668

  • Assessing the Reproducibility of Asthma Candidate Gene Associations, Using Genome-wide Data AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE Rogers, A. J., Raby, B. A., Lasky-Su, J. A., Murphy, A., Lazarus, R., Klanderman, B. J., Sylvia, J. S., Ziniti, J. P., Lange, C., Celedon, J. C., Silverman, E. K., Weiss, S. T. 2009; 179 (12): 1084-1090

    Abstract

    Association studies have implicated many genes in asthma pathogenesis, with replicated associations between single-nucleotide polymorphisms (SNPs) and asthma reported for more than 30 genes. Genome-wide genotyping enables simultaneous evaluation of most of this variation, and facilitates more comprehensive analysis of other common genetic variation around these candidate genes for association with asthma.To use available genome-wide genotypic data to assess the reproducibility of previously reported associations with asthma and to evaluate the contribution of additional common genetic variation surrounding these loci to asthma susceptibility.Illumina Human Hap 550Kv3 BeadChip (Illumina, San Diego, CA) SNP arrays were genotyped in 422 nuclear families participating in the Childhood Asthma Management Program. Genes with at least one SNP demonstrating prior association with asthma in two or more populations were tested for evidence of association with asthma, using family-based association testing.We identified 39 candidate genes from the literature, using prespecified criteria. Of the 160 SNPs previously genotyped in these 39 genes, 10 SNPs in 6 genes were significantly associated with asthma (including the first independent replication for asthma-associated integrin beta(3) [ITGB3]). Evaluation of 619 additional common variants included in the Illumina 550K array revealed additional evidence of asthma association for 15 genes, although none were significant after adjustment for multiple comparisons.We replicated asthma associations for a minority of candidate genes. Pooling genome-wide association study results from multiple studies will increase the power to appreciate marginal effects of genes and further clarify which candidates are true "asthma genes."

    View details for DOI 10.1164/rccm.200812-1860OC

    View details for Web of Science ID 000266787500006

    View details for PubMedID 19264973

  • Asthma genetics and genomics 2009 CURRENT OPINION IN GENETICS & DEVELOPMENT Weiss, S. T., Raby, B. A., Rogers, A. 2009; 19 (3): 279-282

    Abstract

    Asthma Genetic Association studies have been plagued by methodologic problems that are common in all studies of complex traits: small sample size, lack of replication, and lack of control of population stratification. Despite this, the field has identified 43 replicated genes from association studies. The most frequently replicated are: TNF alpha, IL4, FCERB, Adam 33, and GSTP1. Several genes have been identified by linkage and fine mapping (ADAM33, DPP10, GPR154, and PHF11) and one gene has been identified by GWAS (ORMD3). The major issue is that these genes have been looked at one at a time rather than in some more holistic manner where epistasis is considered. For asthma genetics to begin to have an impact on clinical medicine we need to consider epistatic interaction.

    View details for DOI 10.1016/j.gde.2009.05.001

    View details for Web of Science ID 000267585000012

    View details for PubMedID 19481925

  • Genetic association analysis of copy-number variation (CNV) in human disease pathogenesis GENOMICS Ionita-Laza, I., Rogers, A. J., Lange, C., Raby, B. A., Lee, C. 2009; 93 (1): 22-26

    Abstract

    Structural genetic variation, including copy-number variation (CNV), constitutes a substantial fraction of total genetic variability and the importance of structural genetic variants in modulating human disease is increasingly being recognized. Early successes in identifying disease-associated CNVs via a candidate gene approach mandate that future disease association studies need to include structural genetic variation. Such analyses should not rely on previously developed methodologies that were designed to evaluate single nucleotide polymorphisms (SNPs). Instead, development of novel technical, statistical, and epidemiologic methods will be necessary to optimally capture this newly-appreciated form of genetic variation in a meaningful manner.

    View details for DOI 10.1016/j.ygeno.2008.08.012

    View details for Web of Science ID 000262492000006

    View details for PubMedID 18822366

  • Filaggrin mutations confer susceptibility to atopic dermatitis but not to asthma JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY Rogers, A. J., Celedon, J. C., Lasky-Su, J. A., Weiss, S. T., Raby, B. A. 2007; 120 (6): 1332-1337

    Abstract

    Loss-of-function mutations in the filaggrin gene (FLG) have been strongly associated with atopic dermatitis and allergic phenotypes in multiple populations. The role of these mutations in the development of asthma is less clear, particularly in patients who do not have coincident atopic dermatitis.To determine whether FLG mutations are associated with asthma or asthma-related intermediate phenotypes.We genotyped 2 loss-of-function FLG mutations (R501X and 2282del4) in white children (age 5-12 years) with mild to moderate asthma in the Childhood Asthma Management Program. We assessed the relationship of these mutations to asthma and allergy-related phenotypes in children with and without atopic dermatitis using both population-based and family-based tests of association.Nearly 1/3 (185/646) of the participating children had atopic dermatitis. Although strong associations were observed between FLG mutations and atopic dermatitis (odds ratio, 2.4; P = 7.6 x 10(-5)) and between the mutations and total serum IgE level (P = .009 in the atopic dermatitis cohort), no association was noted with either asthma or asthma-related phenotypes, including FEV(1), FEV(1)/forced vital capacity, and methacholine PC(20) (P > .1 for all tests).Although FLG loss-of-function mutations are consistently associated with atopic dermatitis and other allergic phenotypes, these mutations do not appear to influence either susceptibility to asthma or asthma severity phenotypes.Filaggrin mutations that predispose to atopic dermatitis do not modulate the asthma phenotype.

    View details for DOI 10.1016/j.jaci.2007.09.037

    View details for Web of Science ID 000251653800013

    View details for PubMedID 18073125

Stanford Medicine Resources: