Professional Education

  • Doctor of Philosophy, Jawharlal Nehru Centre for Advanced Sci Research (2016)
  • Master of Technology, Vellore Institute Technology (2010)
  • Bachelor of Technology, Anna University (2007)

Research & Scholarship

Lab Affiliations


All Publications

  • T cell-inducing vaccine durably prevents mucosal SHIV infection even with lower neutralizing antibody titers. Nature medicine Arunachalam, P. S., Charles, T. P., Joag, V., Bollimpelli, V. S., Scott, M. K., Wimmers, F., Burton, S. L., Labranche, C. C., Petitdemange, C., Gangadhara, S., Styles, T. M., Quarnstrom, C. F., Walter, K. A., Ketas, T. J., Legere, T., Jagadeesh Reddy, P. B., Kasturi, S. P., Tsai, A., Yeung, B. Z., Gupta, S., Tomai, M., Vasilakos, J., Shaw, G. M., Kang, C. Y., Moore, J. P., Subramaniam, S., Khatri, P., Montefiori, D., Kozlowski, P. A., Derdeyn, C. A., Hunter, E., Masopust, D., Amara, R. R., Pulendran, B. 2020


    Recent efforts toward an HIV vaccine focus on inducing broadly neutralizing antibodies, but eliciting both neutralizing antibodies (nAbs) and cellular responses may be superior. Here, we immunized macaques with an HIV envelope trimer, either alone to induce nAbs, or together with a heterologous viral vector regimen to elicit nAbs and cellular immunity, including CD8+ tissue-resident memory T cells. After ten vaginal challenges with autologous virus, protection was observed in both vaccine groups at 53.3% and 66.7%, respectively. A nAb titer >300 was generally associated with protection but in the heterologous viral vector + nAb group, titers <300 were sufficient. In this group, protection was durable as the animals resisted six more challenges 5 months later. Antigen stimulation of T cells in ex vivo vaginal tissue cultures triggered antiviral responses in myeloid and CD4+ T cells. We propose that cellular immune responses reduce the threshold of nAbs required to confer superior and durable protection.

    View details for DOI 10.1038/s41591-020-0858-8

    View details for PubMedID 32393800

  • Toll-Like Receptor 9 Activation Rescues Impaired Antibody Response in Needle-free Intradermal DNA Vaccination SCIENTIFIC REPORTS Arunachalam, P. S., Mishra, R., Badarinath, K., Selvam, D., Payeli, S. K., Stout, R. R., Ranga, U. 2016; 6


    The delivery of plasmid DNA to the skin can target distinct subsets of dermal dendritic cells to confer a superior immune response. The needle-free immunization technology offers a reliable, safe and efficient means to administer intradermal (ID) injections. We report here that the ID injection of DNA vectors using an NF device (NF-ID) elicits a superior cell-mediated immune response, at much lesser DNA dosage, comparable in magnitude to the traditional intramuscular immunization. However, the humoral response is significantly impaired, possibly at the stage of B cell isotype switching. We found that the NF-ID administration deposits the DNA primarily on the epidermis resulting in a rapid loss of the DNA as well as the synthesized antigen due to the faster regeneration rate of the skin layers. Therefore, despite the immune-rich nature of the skin, the NF-ID immunization of DNA vectors may be limited by the impaired humoral response. Additional booster injections are required to augment the antibody response. As an alternative and a viable solution, we rescued the IgG response by coadministration of a Toll-like receptor 9 agonist, among other adjuvants examined. Our work has important implication for the optimization of the emerging needle-free technology for ID immunization.

    View details for DOI 10.1038/srep33564

    View details for Web of Science ID 000383946000001

    View details for PubMedID 27658623

    View details for PubMedCentralID PMC5034244

Latest information on COVID-19