Bio

Clinical Focus


  • Pediatric Critical Care Medicine

Academic Appointments


Administrative Appointments


  • Interim Division Chief, Pediatric Critical Care (2014 - Present)
  • Medical Director, PICU (2011 - Present)
  • Pediatric Code Committee Chair, LPCH (2009 - Present)
  • Medical Director of Pediatric Transport, LPCH (2008 - 2014)

Professional Education


  • Board Certification: Pediatrics, American Board of Pediatrics (1999)
  • Residency:UCSD Medical Center (1999) CA
  • Board Certification: Pediatric Critical Care Medicine, American Board of Pediatrics (2004)
  • Fellowship:Children's Hospital and Health Center- UC San Diego (2002) CA
  • Internship:UCSD Medical Center (1997) CA
  • Medical Education:UCSD School of Medicine (1996) CA

Publications

Journal Articles


  • Improving Code Team Performance and Survival Outcomes: Implementation of Pediatric Resuscitation Team Training CRITICAL CARE MEDICINE Knight, L. J., Gabhart, J. M., Earnest, K. S., Leong, K. M., Anglemyer, A., Franzon, D. 2014; 42 (2): 243-251

    Abstract

    To determine whether implementation of Composite Resuscitation Team Training is associated with improvement in survival to discharge and code team performance after pediatric in-hospital cardiopulmonary arrest.We conducted a prospective observational study with historical controls at a 302-bed, quaternary care, academic children's hospital. Inpatients who experienced cardiopulmonary arrest between January 1, 2006, and December 31, 2009, were included in the control group (123 patients experienced 183 cardiopulmonary arrests) and between July 1, 2010, and June 30, 2011, were included in the intervention group (46 patients experienced 65 cardiopulmonary arrests).Code team members were introduced to Composite Resuscitation Team Training and continued training throughout the intervention period (January 1, 2010-June 30, 2011). Training was integrated via in situ code blue simulations (n = 16). Simulations were videotaped and participants were debriefed for education and process improvement. Primary outcome was survival to discharge after cardiopulmonary arrest. Secondary outcome measures were 1) change in neurologic morbidity from admission to discharge, measured by Pediatric Cerebral Performance Category, and 2) code team adherence to resuscitation Standard Operating Performance variables.The intervention group was more likely to survive than the control group (60.9% vs 40.3%) (unadjusted odds ratio, 2.3 [95% CI, 1.15-4.60]) and had no significant change in neurologic morbidity (mean change in Pediatric Cerebral Performance Category 0.11 vs 0.27; p = 0.37). Code teams exposed to Composite Resuscitation Team Training were more likely than control group to adhere to resuscitation Standard Operating Performance (35.9% vs 20.8%) (unadjusted odds ratio, 2.14 [95% CI, 1.15-3.99]). After adjusting for adherence to Standard Operating Performance, survival remained improved in the intervention period (odds ratio, 2.13 [95% CI, 1.06-4.36]).With implementation of Composite Resuscitation Team Training, survival to discharge after pediatric cardiopulmonary arrest improved, as did code team performance. Demonstration of improved survival after adjusting for code team adherence to resuscitation standards suggests that this may be a valuable resuscitation training program. Further studies are needed to determine causality and generalizability.

    View details for DOI 10.1097/CCM.0b013e3182a6439d

    View details for Web of Science ID 000329863400019

    View details for PubMedID 24158170

  • Embedding time-limited laboratory orders within computerized provider order entry reduces laboratory utilization*. Pediatric critical care medicine Pageler, N. M., Franzon, D., Longhurst, C. A., Wood, M., Shin, A. Y., Adams, E. S., Widen, E., Cornfield, D. N. 2013; 14 (4): 413-419

    Abstract

    : To test the hypothesis that limits on repeating laboratory studies within computerized provider order entry decrease laboratory utilization.: Cohort study with historical controls.: A 20-bed PICU in a freestanding, quaternary care, academic children's hospital.: This study included all patients admitted to the pediatric ICU between January 1, 2008, and December 31, 2009. A total of 818 discharges were evaluated prior to the intervention (January 1, 2008, through December 31, 2008) and 1,021 patient discharges were evaluated postintervention (January 1, 2009, through December 31, 2009).: A computerized provider order entry rule limited the ability to schedule repeating complete blood cell counts, chemistry, and coagulation studies to a 24-hour interval in the future. The time limit was designed to ensure daily evaluation of the utility of each test.: Initial analysis with t tests showed significant decreases in tests per patient day in the postintervention period (complete blood cell counts: 1.5 ± 0.1 to 1.0 ± 0.1; chemistry: 10.6 ± 0.9 to 6.9 ± 0.6; coagulation: 3.3 ± 0.4 to 1.7 ± 0.2; p < 0.01, all variables vs. preintervention period). Even after incorporating a trend toward decreasing laboratory utilization in the preintervention period into our regression analysis, the intervention decreased complete blood cell counts (p = 0.007), chemistry (p = 0.049), and coagulation (p = 0.001) tests per patient day.: Limits on laboratory orders within the context of computerized provider order entry decreased laboratory utilization without adverse affects on mortality or length of stay. Broader application of this strategy might decrease costs, the incidence of iatrogenic anemia, and catheter-associated bloodstream infections.

    View details for DOI 10.1097/PCC.0b013e318272010c

    View details for PubMedID 23439456

  • Computerized Physician Order Entry With Decision Support Decreases Blood Transfusions in Children PEDIATRICS Adams, E. S., Longhurst, C. A., Pageler, N., Widen, E., Franzon, D., Cornfield, D. N. 2011; 127 (5): E1112-E1119

    Abstract

    Timely provision of evidence-based recommendations through computerized physician order entry with clinical decision support may improve use of red blood cell transfusions (RBCTs).We performed a cohort study with historical controls including inpatients admitted between February 1, 2008, and January 31, 2010. A clinical decision-support alert for RBCTs was constructed by using current evidence. RBCT orders resulted in assessment of the patient's medical record with prescriber notification if parameters were not within recommended ranges. Primary end points included the average pretransfusion hemoglobin level and the rate of RBCTs per patient-day.In total, 3293 control discharges and 3492 study discharges were evaluated. The mean (SD) control pretransfusion hemoglobin level in the PICU was 9.83 (2.63) g/dL (95% confidence interval [CI]: 9.65-10.01) compared with the study value of 8.75 (2.05) g/dL (95% CI: 8.59-8.90) (P < .0001). The wards' control value was 7.56 (0.93) g/dL (95% CI: 7.47-7.65), the study value was 7.14 (1.01) g/dL (95% CI: 6.99-7.28) (P < .0001). The control PICU rate of RBCTs per patient-day was 0.20 (0.11) (95% CI: 0.13-0.27), the study rate was 0.14 (0.04) (95% CI: 0.11-0.17) (P = .12). The PICU's control rate was 0.033 (0.01) (95% CI: 0.02-0.04), and the study rate was 0.017 (0.007) (95% CI: 0.01-0.02) (P < .0001). There was no difference in mortality rates across all cohorts.Implementation of clinical decision-support alerts was associated with a decrease in RBCTs, which suggests improved adoption of evidence-based recommendations. This strategy might be widely applied to promote timely adoption of scientific evidence.

    View details for DOI 10.1542/peds.2010-3252

    View details for Web of Science ID 000290097800002

    View details for PubMedID 21502229

Stanford Medicine Resources: