Bio

Professional Education


  • Doctor of Philosophy, Universite De Paris Vii (2011)

Stanford Advisors


Research & Scholarship

Lab Affiliations


Publications

Journal Articles


  • Adult ovarian granulosa cell tumor transcriptomics: prevalence of FOXL2 target genes misregulation gives insights into the pathogenic mechanism of the p.Cys134Trp somatic mutation. Oncogene Benayoun, B. A., Anttonen, M., L'Hôte, D., Bailly-Bechet, M., Andersson, N., Heikinheimo, M., Veitia, R. A. 2013; 32 (22): 2739-2746

    Abstract

    Ovarian granulosa cell tumors (OGCT) are the most frequent kind of sex cord-stromal tumors, and represent ?2-5% of all ovarian malignancies. OGCTs exist as two entities, juvenile and adult types, with specific clinical and pathological characteristics. The molecular pathogenesis of these tumors has just begun to be unraveled. Indeed, recent studies have indicated that mutation and/or misregulation of the key ovarian transcription factor FOXL2 has a role in OGCT formation, although the mechanisms remain unclear. To better understand the molecular characteristics of OGCT, we studied the transcriptomic profiles of ten human adult-type OGCT samples, as well as ethnically matched granulosa cell (GC) controls. We find that the OGCT samples analyzed herein exhibit several hallmarks of cancer, including increased expression of genes linked to cell proliferation, but decreased expression of those conferring sensitivity to cell death. Moreover, genes differentially expressed in OGCTs are significantly enriched for known FOXL2 target genes, consistently with the prevalence of FOXL2 somatic mutation in these tumors. Expression of these targets is altered in a way expected to promote malignant transformation, for instance, through induction of genes associated with faster cell cycling and downregulation of genes associated with cell death. Over time, such defects may be responsible at least partly for the malignant transformation of healthy GCs into OGCT. These insights into the molecular pathogenesis of OGCTs may open the way to new efforts in the development of more targeted therapeutic strategies for OGCT patients.

    View details for DOI 10.1038/onc.2012.298

    View details for PubMedID 22797072

  • Epigenetic memory of longevity in Caenorhabditis elegans. Worm Benayoun, B. A., Brunet, A. 2012; 1 (1): 77-81

    Abstract

    A recent study by Greer et al. in the nematode C. elegans has shown transgenerational epigenetic inheritance of longevity in the descendants of worms deficient for subunits of a complex responsible for histone H3 lysine 4 trimethylation (H3K4me3). In this commentary, we discuss the implications of this epigenetic memory of longevity and the potential mechanisms underlying this phenomenon. The transgenerational inheritance of longevity could result from heritable depletion of H3K4me3 at particular aging-regulating gene loci that would only be progressively replenished. The epigenetic memory of longevity could also be explained by the transgenerational transmission of other molecules, for example other proteins or non-coding RNAs. The discovery of an epigenetic memory of longevity in worms raises the intriguing possibility that environmental cues modulating longevity in ancestors might affect subsequent generations in a non-Mendelian manner. Another remaining intriguing question is whether transgenerational inheritance of longevity also exists in other species, including mammals.

    View details for DOI 10.4161/worm.19157

    View details for PubMedID 24058828

  • Forkhead transcription factors: key players in health and disease TRENDS IN GENETICS Benayoun, B. A., Caburet, S., Veitia, R. A. 2011; 27 (6): 224-232

    Abstract

    Forkhead box (FOX) proteins constitute an evolutionarily conserved family of transcription factors with a central role not only during development, but also in the adult organism. Thus, the misregulation and/or mutation of FOX genes often induce human genetic diseases, promote cancer or deregulate ageing. Indeed, germinal FOX gene mutations cause diseases ranging from infertility to language and/or speech disorders and immunological defects. Moreover, because of their central role in signalling pathways and in the regulation of homeostasis, somatic misregulation and/or mutation of FOX genes are associated with cancer. FOX proteins have undergone diversification in terms of their sequence, regulation and function. In addition to dedicated roles, evidence suggests that Forkhead factors have retained some functional redundancy. Thus, combinations of slightly defective alleles might induce disease phenotypes in humans, acting as quantitative trait loci. Uncovering such variants would be a big step towards understanding the functional interdependencies of different FOX members and their implications in complex pathologies.

    View details for DOI 10.1016/j.tig.2011.03.003

    View details for Web of Science ID 000291567400003

    View details for PubMedID 21507500

  • Transcription factor FOXL2 protects granulosa cells from stress and delays cell cycle: role of its regulation by the SIRT1 deacetylase HUMAN MOLECULAR GENETICS Benayoun, B. A., Georges, A. B., L'Hote, D., Andersson, N., Dipietromaria, A., Todeschini, A., Caburet, S., Bazin, C., Anttonen, M., Veitia, R. A. 2011; 20 (9): 1673-1686

    Abstract

    FOXL2 is a transcription factor that is essential for ovarian function and maintenance, the germline mutations of which are responsible for the Blepharophimosis Ptosis Epicanthus-inversus Syndrome (BPES), often associated with premature ovarian failure. Recent evidence has linked FOXL2 downregulation or somatic mutation (p.Cys134Trp) to cancer, although underlying molecular mechanisms remain unclear. Using a functional genomic approach, we find that FOXL2 modulates cell-cycle regulators in a way which tends to induce G1 arrest. Indeed, FOXL2 upregulation promotes cell accumulation in G1 phase and protects cells from oxidative damage, notably by promoting oxidized DNA repair and by increasing the amounts of anti-oxidant agent glutathione. In agreement with clinical observations, we find that FOXL2-mutated versions leading to BPES along with ovarian dysfunction mostly fail to transactivate cell-cycle and DNA repair targets, whereas mutations leading to isolated craniofacial defects (and normal ovarian function) activate them correctly. Interestingly, these assays revealed a mild promoter-specific hypomorphy of the tumor-associated mutation (p.Cys134Trp). Finally, the SIRT1 deacetylase suppresses FOXL2 activity on targets linked to cell-cycle and DNA repair in a dose-dependent manner. Accordingly, we find that SIRT1 inhibition by nicotinamide limits proliferation, notably by increasing endogenous FOXL2 amount/activity. The body of evidence presented here supports the idea that FOXL2 plays a key role in granulosa cell homeostasis, the failure of which is central to ovarian ageing and tumorigenesis. As granulosa cell tumors respond poorly to conventional chemotherapy, our findings on the deacetylase inhibitor nicotinamide provide an interesting option for targeted therapy.

    View details for DOI 10.1093/hmg/ddr042

    View details for Web of Science ID 000289311400001

    View details for PubMedID 21289058

  • A post-translational modification code for transcription factors: sorting through a sea of signals TRENDS IN CELL BIOLOGY Benayoun, B. A., Veitia, R. A. 2009; 19 (5): 189-197

    Abstract

    Cellular responses to environmental or physiological cues rely on transduction pathways that must ensure discrimination between different signals. These cascades 'crosstalk' and lead to a combinatorial regulation. This often results in different combinations of post-translational modifications (PTMs) on target proteins, which might act as a molecular barcode. Although appealing, the idea of the existence of such a code for transcription factors is debated. Using general arguments and recent evidence, we propose that a PTM code is not only possible but necessary in the context of transcription factors regulating multiple processes. Thus, the coding potential of PTM combinations should both provide a further layer of information integration from several transduction pathways and warrant highly specific cellular outputs.

    View details for DOI 10.1016/j.tcb.2009.02.003

    View details for Web of Science ID 000266623500001

    View details for PubMedID 19328693

  • Males Shorten the Life Span of C. elegans Hermaphrodites via Secreted Compounds SCIENCE Maures, T. J., Booth, L. N., Benayoun, B. A., Izrayelit, Y., Schroeder, F. C., Brunet, A. 2014; 343 (6170): 541-544

    Abstract

    How an individual's longevity is affected by the opposite sex is still largely unclear. In the nematode Caenorhabditis elegans, the presence of males accelerated aging and shortened the life span of individuals of the opposite sex (hermaphrodites), including long-lived or sterile hermaphrodites. The male-induced demise could occur without mating and required only exposure of hermaphrodites to medium in which males were once present. Such communication through pheromones or other diffusible substances points to a nonindividual autonomous mode of aging regulation. The male-induced demise also occurred in other species of nematodes, suggesting an evolutionary conserved process whereby males may induce the disposal of the opposite sex to save resources for the next generation or to prevent competition from other males.

    View details for DOI 10.1126/science.1244160

    View details for Web of Science ID 000330343700047

    View details for PubMedID 24292626

  • Discovery of novel protein partners of the transcription factor FOXL2 provides insights into its physiopathological roles HUMAN MOLECULAR GENETICS L'Hote, D., Georges, A., Todeschini, A. L., Kim, J., Benayoun, B. A., Bae, J., Veitia, R. A. 2012; 21 (14): 3264-3274

    Abstract

    FOXL2 transcription factor is responsible for the Blepharophimosis Ptosis Epicantus inversus Syndrome (BPES), a genetic disease involving craniofacial malformations often associated with ovarian failure. Recently, a somatic FOXL2 mutation (p.C134W) has been reported in >95% of adult-type granulosa cell tumors. Here, we have identified 10 novel FOXL2 partners by yeast-two-hybrid screening and co-immunoprecipitation. Most BPES-inducing mutated FOXL2 proteins display aggregation in cultured cells. Here, we show that two of the partners (NR2C1 and GMEB1) can be sequestered in such aggregates. This co-aggregation can contribute to the pathogenesis of FOXL2 mutations. We have also measured the effects of FOXL2 interactants on the transcriptional regulation of a series of target promoters. Some of the partners (CXXC4, CXXC5, BANF1) were able to repress FOXL2 activity indistinctively of the promoter. Interestingly, CREM-?2?, which acted as a repressor on most promoters, increased wild-type (WT) FOXL2 activity on two promoters (PTGS2 and CYP19A1), but was unable to increase the activity of the oncogenic mutant p.C134W. Conversely, GMEB1, which also acted as a repressor on most promoters and increased WT FOXL2 activity on the Per2 promoter, increased to a greater extent the activity of the p.C134W variant. Interestingly, partners with intrinsic pro-apoptotic effect were able to increase apoptosis induction by WT FOXL2, but not by the p.C134W mutant, whereas partners with an anti-apoptotic effect decreased apoptosis induction by both FOXL2 versions. Altogether, these results suggest that the p.C134W mutated form fails to integrate signals through protein-protein interactions to regulate target promoter subsets and in particular to induce cell death.

    View details for DOI 10.1093/hmg/dds170

    View details for Web of Science ID 000305822700014

    View details for PubMedID 22544055

  • The transcription factor FOXL2: At the crossroads of ovarian physiology and pathology MOLECULAR AND CELLULAR ENDOCRINOLOGY Caburet, S., Georges, A., L'Hote, D., Todeschini, A., Benayoun, B. A., Veitia, R. A. 2012; 356 (1-2): 55-64

    Abstract

    FOXL2 is a gene encoding a forkhead transcription factor. Its mutations or misregulation have been shown to cause the blepharophimosis-ptosis-epicanthus inversus (BPES) syndrome and more recently have been associated with the development of Ovarian Granulosa Cell Tumors (OGCT). BPES is a genetic disorder involving mild craniofacial abnormalities often associated with premature ovarian failure. OGCTs are endocrine malignancies, accounting for 2-5% of ovarian cancers, the treatment of which is still challenging. In this review we summarize recent data concerning FOXL2 transcriptional targets and molecular partners, its post-translational modifications, its mutations and its involvement in newly discovered pathophysiological processes. In the ovary, FOXL2 is involved in the regulation of cholesterol and steroid metabolism, apoptosis, reactive oxygen species detoxification and cell proliferation. Interestingly, one of the main roles of FOXL2 is also to preserve the identity of ovarian granulosa cells even at the adult stage and to prevent their transdifferentiation into Sertoli-like cells. All these recent advances indicate that FOXL2 is central to ovarian development and maintenance. The elucidation of the impact of FOXL2 germinal and somatic mutations will allow a better understanding of the pathogenesis of BPES and of OGCTs.

    View details for DOI 10.1016/j.mce.2011.06.019

    View details for Web of Science ID 000303641500008

    View details for PubMedID 21763750

  • The Transcription Factor Encyclopedia GENOME BIOLOGY Yusuf, D., Butland, S. L., Swanson, M. I., Bolotin, E., Ticoll, A., Cheung, W. A., Zhang, X. Y., Dickman, C. T., Fulton, D. L., Lim, J. S., Schnabl, J. M., Ramos, O. H., Vasseur-Cognet, M., de Leeuw, C. N., Simpson, E. M., Ryffel, G. U., Lam, E. W., Kist, R., Wilson, M. S., Marco-Ferreres, R., Brosens, J. J., Beccari, L. L., Bovolenta, P., Benayoun, B. A., Monteiro, L. J., Schwenen, H. D., Grontved, L., Wederell, E., Mandrup, S., Veitia, R. A., Chakravarthy, H., Hoodless, P. A., Mancarelli, M. M., Torbett, B. E., Banham, A. H., Reddy, S. P., Cullum, R. L., Liedtke, M., Tschan, M. P., Vaz, M., Rizzino, A., Zannini, M., Frietze, S., Farnham, P. J., Eijkelenboom, A., Brown, P. J., Laperriere, D., Leprince, D., de Cristofaro, T., Prince, K. L., Putker, M., del Peso, L., Camenisch, G., Wenger, R. H., Mikula, M., Rozendaal, M., Mader, S., Ostrowski, J., Rhodes, S. J., Van Rechem, C., Boulay, G., Olechnowicz, S. W., Breslin, M. B., Lan, M. S., Nanan, K. K., Wegner, M., Hou, J., Mullen, R. D., Colvin, S. C., Noy, P. J., Webb, C. F., Witek, M. E., Ferrell, S., Daniel, J. M., Park, J., Waldman, S. A., Peet, D. J., Taggart, M., Jayaraman, P., Karrich, J. J., Blom, B., Vesuna, F., O'Geen, H., Sun, Y., Gronostajski, R. M., Woodcroft, M. W., Hough, M. R., Chen, E., Europe-Finner, G. N., Karolczak-Bayatti, M., Bailey, J., Hankinson, O., Raman, V., LeBrun, D. P., Biswal, S., Harvey, C. J., DeBruyne, J. P., Hogenesch, J. B., Hevner, R. F., Heligon, C., Luo, X. M., Blank, M. C., Millen, K. J., Sharlin, D. S., Forrest, D., Dahlman-Wright, K., Zhao, C., Mishima, Y., Sinha, S., Chakrabarti, R., Portales-Casamar, E., Sladek, F. M., Bradley, P. H., Wasserman, W. W. 2012; 13 (3)

    Abstract

    Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written and vetted by experts in the field. TFe is available at http://www.cisreg.ca/tfe.

    View details for DOI 10.1186/gb-2012-13-3-r24

    View details for Web of Science ID 000308544200009

    View details for PubMedID 22458515

  • Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans NATURE Greer, E. L., Maures, T. J., Ucar, D., Hauswirth, A. G., Mancini, E., Lim, J. P., Benayoun, B. A., Shi, Y., Brunet, A. 2011; 479 (7373): 365-U204

    Abstract

    Chromatin modifiers regulate lifespan in several organisms, raising the question of whether changes in chromatin states in the parental generation could be incompletely reprogrammed in the next generation and thereby affect the lifespan of descendants. The histone H3 lysine 4 trimethylation (H3K4me3) complex, composed of ASH-2, WDR-5 and the histone methyltransferase SET-2, regulates Caenorhabditis elegans lifespan. Here we show that deficiencies in the H3K4me3 chromatin modifiers ASH-2, WDR-5 or SET-2 in the parental generation extend the lifespan of descendants up until the third generation. The transgenerational inheritance of lifespan extension by members of the ASH-2 complex is dependent on the H3K4me3 demethylase RBR-2, and requires the presence of a functioning germline in the descendants. Transgenerational inheritance of lifespan is specific for the H3K4me3 methylation complex and is associated with epigenetic changes in gene expression. Thus, manipulation of specific chromatin modifiers only in parents can induce an epigenetic memory of longevity in descendants.

    View details for DOI 10.1038/nature10572

    View details for Web of Science ID 000297059700038

    View details for PubMedID 22012258

  • The forkhead factor FOXL2: A novel tumor suppressor? BIOCHIMICA ET BIOPHYSICA ACTA-REVIEWS ON CANCER Benayoun, B. A., Kalfa, N., Sultan, C., Veitia, R. A. 2010; 1805 (1): 1-5

    Abstract

    FOXL2 is a gene encoding a forkhead transcription factor, whose germline mutations are responsible for the blepharophimosis ptosis epicanthus inversus syndrome. We have previously shown that expression levels of FOXL2 in a series of juvenile ovarian granulosa cell tumors (OGCTs) were markedly reduced. More recently, a whole-transcriptome 'next-generation' sequencing study has identified the somatic mutation p.Cys134Trp as recurring in adult OGCTs. This mutation may thus provide the tumor with either a striking proliferative potential or increased survival abilities. These studies of FOXL2 in OGCTs suggest that it may act as a tumor suppressor gene. This is in line with the fact that other forkhead transcription factors have already been involved in the etiology of cancer. Indeed, an in-depth review of existing data on FOXL2 reveals that its target genes and molecular partners can often be linked to cancer progression.

    View details for DOI 10.1016/j.bbcan.2009.09.002

    View details for Web of Science ID 000274665700001

    View details for PubMedID 19747961

  • Positive and negative feedback regulates the transcription factor FOXL2 in response to cell stress: evidence for a regulatory imbalance induced by disease-causing mutations HUMAN MOLECULAR GENETICS Benayoun, B. A., Batista, F., Auer, J., Dipietromaria, A., L'Hote, D., De Baere, E., Veitia, R. A. 2009; 18 (4): 632-644

    Abstract

    FOXL2 is a forkhead transcription factor, essential for ovarian function, whose mutations are responsible for the blepharophimosis syndrome, characterized by craniofacial defects, often associated with premature ovarian failure. Here, we show that cell stress upregulates FOXL2 expression in an ovarian granulosa cell model. Increased FOXL2 transcription might be mediated at least partly by self-activation. Moreover, using 2D-western blot, we show that the response of FOXL2 to stress correlates with a dramatic remodeling of its post-translational modification profile. Upon oxidative stress, we observe an increased recruitment of FOXL2 to several stress-response promoters, notably that of the mitochondrial manganese superoxide dismutase (MnSOD). Using several reporter systems, we show that FOXL2 transactivation is enhanced in this context. Models predict that gene upregulation in response to a signal should eventually be counterbalanced to restore the initial steady state. In line with this, we find that FOXL2 activity is repressed by the SIRT1 deacetylase. Interestingly, we demonstrate that SIRT1 transcription is, in turn, directly upregulated by FOXL2, which closes a negative-feedback loop. The regulatory relationship between FOXL2 and SIRT1 prompted us the test action of nicotinamide, an inhibitor of sirtuins, on FoxL2 expression/activity. According to our expectations, nicotinamide treatment increases FoxL2 transcription. Finally, we show that 11 disease-causing mutations in the ORF of FOXL2 induce aberrant regulation of FOXL2 and/or regulation of the FOXL2 stress-response target gene MnSOD. Taken together, our results establish that FOXL2 is an actor of the stress response and provide new insights into the pathogenic consequences of FOXL2 mutations.

    View details for DOI 10.1093/hmg/ddn389

    View details for Web of Science ID 000262719900004

    View details for PubMedID 19010791

  • The identification and characterization of a FOXL2 response element provides insights into the pathogenesis of mutant alleles HUMAN MOLECULAR GENETICS Benayoun, B. A., Caburet, S., Dipietromaria, A., Bailly-Bechet, M., Batista, F., Fellous, M., Vaiman, D., Veitia, R. A. 2008; 17 (20): 3118-3127

    Abstract

    The Forkhead transcription factor FOXL2 plays a crucial role in ovarian development and maintenance. In humans, its mutations lead to craniofacial abnormalities, isolated or associated with ovarian dysfunction. Using a combinatorial approach, we identified and characterized a FoxL2 response element (FLRE) and showed that it is highly specific and that it diverges from that of other Forkhead transcription factors. This specificity should prevent aberrant regulation of FOXL2 targets by other members of the family and should prevent ectopic activation of the ovarian differentiation program in testes. We provide evidence that the FLRE is used in naturally occurring promoters. We show that polyAlanine expansions of FOXL2, which are the most frequent pathogenic mutations, induce a length-dependent loss of response on different artificial promoter reporters depending on the number and sequence of the FLREs that they contain. Thus, we provide clear mechanistic evidence explaining how the architecture of promoters influences their sensitivity to decreased transcription factor availability. Furthermore, we speculate that the generally absent ovarian phenotype of patients carrying the most frequent polyAlanine expansion should come from its ability to properly regulate high-affinity ovarian targets. The existence of critical high-affinity ovarian targets would be compatible with the role of FOXL2 in reproduction and ensure developmental and functional robustness. Taken together, our results give mechanistic insights on the molecular pathogenesis of FOXL2 polyAlanine expansions.

    View details for DOI 10.1093/hmg/ddn209

    View details for Web of Science ID 000259766800003

    View details for PubMedID 18635577

  • The post-translational modification profile of the forkhead transcription factor FOXL2 suggests the existence of parallel processive/concerted modification pathways PROTEOMICS Benayoun, B. A., Auer, J., Caburet, S., Veitia, R. A. 2008; 8 (15): 3118-3123

    Abstract

    The transcription factor Forkhead box L subfamily member 2 (FOXL2) is involved in craniofacial development and ovarian function. Using 2-DE and immunoblotting, we show that it is highly modified post-translationally. The most outstanding feature of its migration profile is the presence of two distinct modification "trains" and the absence of intermediates. A theoretical analysis of the modification profile of FOXL2 suggests that it undergoes parallel processive/concerted modifications. The absence of intermediates is compatible with the recruitment of poorly modified FOXL2 into a post-translational "modification factory."

    View details for DOI 10.1002/pmic.200800084

    View details for Web of Science ID 000258503400013

    View details for PubMedID 18604817

Stanford Medicine Resources: