Childhood cancers can be considered aberrations of normal tissue development. We are interested in understanding childhood cancers through the lens of normal development. Further, individual tumors are composed of heterogeneous cell populations, not all cells being equal in their ability to respond to treatment or to repopulate a tumor. Clinically, most tumors will respond to up-front treatment but morbidity and mortality result from relapsed disease.

To address the intrinsic heterogeneity of primary cancers, we have taken a single-cell approach to the study of cancer, particularly childhood leukemia. To organize the tremendous data generated from single-cell studies, we also seek to understand the healthy structure of the tissue of origin.

Using single-cell, high-parameter analysis platforms, such as mass cytometry, to examine primary patient samples, we seek to identify how childhood cancers diverge from their healthy tissue of origin and how cancer cells may exploit developmental states for their benefit. Further, what populations or features of tumor cells are associated with clinical outcomes of interest, such as site of disease, relapse, or drug resistance? Using this knowledge, we can further investigate new approaches to treatment for children with cancer and mechanisms of drug resistance, and with a particular interest in how this relates to immunotherapeutic approaches to cancer treatment.