Stanford APBI Trial

Clinical Trial

Overview

Intraoperative Radiotherapy (IORT) is one of three approaches used for accelerated, partial breast irradiation at Stanford.

Accelerated, partial breast irradiation (APBI) is a potentially important new way to incorporate radiotherapy in the treatment of women with breast cancer.

Currently, women with breast cancer who undergo a lumpectomy  typically have 6 1/2 weeks of radiation to the entire affected breast after surgery.  Accelerated, partial breast irradiation (APBI) changes this approach in two ways. It shortens the treatment time from 6 1/2 weeks to between 1 to 5 days, and reduces the treatment area from the entire breast to the area of the breast immediately around the lumpectomy site. This is the part of the breast where most cancers are likely to recur.

In many ways APBI is to current whole breast radiotherapy what a lumpectomy is to a mastectomy. The goal is to use a less invasive more focused treatment without compromising survival.

APBI has been used in limited trials in several hundred patients over the last 10 years. These trials show that in properly selected breast cancer patients APBI  worked just as well as whole breast radiotherapy. In the initial studies, investigators relied on the placement of many catheters in the breast tissue (interstial brachytherapy). Newer techniques will hopefully provide the same good results but will deliver the radiation in faster and/or more convenient ways. This could increase interest in APBI and allow additional clinical trials that test the safety and effectiveness of the newer approaches. These newer approaches could increase quality of life for many women with breast cancer.

Investigators at Stanford University Medical Center are currently offering an IRB approved clinical trial that uses three new approaches for APBI. These three approaches are:

    Intraoperative Radiotherapy (IORT) - 1 day

    Intracavitary Brachytherapy (MammoSite) - 5 days

    3-D Conformal/External Beam Radiotherapy - 5 days

The Stanford trial is led by Dr. Frederick Dirbas, Assistant Professor of Surgery, and by Dr. Donald Goffinet, Professor of Radiation Oncology. For further information about the trial please contact Janelle Maxwell or Triona Dolphin at (650) 498-7740.

  • Web-Based Physical Activity Intervention in Improving Long Term Health in Children and Adolescents With Cancer

    This randomized clinical phase III trial studies how well web-based physical activity intervention works in improving long term health in children and adolescents with cancer. Regular physical activity after receiving treatment for cancer may help to maintain a healthy weight and improve energy levels and overall health.

    Now accepting new patients View Details
  • Stem Cell Transplant From Donors After Alpha Beta Cell Depletion in Children and Young Adults

    The purpose of the CliniMACS® TCRαβ-Biotin System and CliniMACS® CD19 is to improve the safety and efficacy of allogeneic HLA-partially matched related or unrelated donors HSCT when no matched donors are available, to treat malignant and nonmalignant disorders for which HSCT is the recommended best available therapy. Initially this device will be used in a single-center, open-label, single-arm, phase II clinical trial to evaluate the efficacy of haploidentical PBSC grafts depleted of TCRα/β+ and CD19+ cells using the CliniMACS® TCRαβ/CD19 System in children and adults with hematological and non-hematological malignancies.

    Now accepting new patients View Details
  • Study of Venetoclax in Combination With Chemotherapy in Pediatric Patients With Refractory or Relapsed Acute Myeloid Leukemia or Acute Leukemia of Ambiguous Lineage

    The purpose of this study is to test the safety and determine the best dose of venetoclax and cytarabine when given with or without idarubicin in treating pediatric patients with acute myeloid leukemia (AML) that did not respond to treatment (refractory) or has come back after treatment (relapsed).

    PRIMARY OBJECTIVE: Determine a tolerable combination of venetoclax plus chemotherapy in pediatric patients with relapsed or refractory AML or acute leukemia of ambiguous lineage. The primary endpoints are the recommended phase 2 doses (RP2D) of venetoclax plus cytarabine and venetoclax plus cytarabine and idarubicin.

    SECONDARY OBJECTIVE: Estimate the overall response rate to the combination of venetoclax and chemotherapy in pediatric patients with relapsed or refractor AML or acute leukemia of ambiguous lineage. The secondary endpoints are the rates of complete remission (CR) and complete remission with incomplete count recovery (CRi) for patients treated at the RP2D.

    Investigator

    Now accepting new patients View Details
  • Phase I Dose Escalation Study of CD19/CD22 Chimeric Antigen Receptor (CAR) T Cells in Children and Young Adults With Recurrent or Refractory B Cell Malignancies

    This phase I trial studies the best dose and side effects of CD19/CD22 chimeric antigen receptor (CAR) T cells when given together with chemotherapy, and to see how well they work in treating children or young adults with CD19 positive B acute lymphoblastic leukemia that has come back or does not respond to treatment. A CAR is a genetically-engineered receptor made so that immune cells (T cells) can attack cancer cells by recognizing and responding to the CD19/CD22 proteins. These proteins are commonly found on B acute lymphoblastic leukemia. Drugs used in chemotherapy, such as fludarabine phosphate and cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving CD19/CD22-CAR T cells and chemotherapy may work better in treating children or young adults with B acute lymphoblastic leukemia.

    Now accepting new patients View Details
  • Imatinib Mesylate and Combination Chemotherapy in Treating Patients With Newly Diagnosed Philadelphia Chromosome Positive Acute Lymphoblastic Leukemia

    This randomized phase III trial studies how well imatinib mesylate works in combination with two different chemotherapy regimens in treating patients with newly diagnosed Philadelphia chromosome positive acute lymphoblastic leukemia (ALL). Imatinib mesylate has been shown to improve outcomes in children and adolescents with Philadelphia chromosome positive (Ph+) ALL when given with strong chemotherapy, but the combination has many side effects. This trial is testing whether a different chemotherapy regimen may work as well as the stronger one but have fewer side effects when given with imatinib. The trial is also testing how well the combination of chemotherapy and imatinib works in another group of patients with a type of ALL that is similar to Ph+ ALL. This type of ALL is called "ABL-class fusion positive ALL", and because it is similar to Ph+ ALL, is thought it will respond well to the combination of agents used to treat Ph+ ALL.

    Now accepting new patients View Details
  • Home Away From Home - Quality of Life Surveys

    Treatment for pediatric acute myeloid leukemia (AML) involves intensive chemotherapy regimens that result in periods of profound neutropenia leaving patients susceptible to severe infectious complications. Infectious complications are the leading cause of treatment related mortality among AML patients, but there are little clinical data to inform whether management of neutropenia post AML chemotherapy should occur in an outpatient or inpatient setting. Further, no studies have been conducted that assess the impact of neutropenia management strategy on the quality of life of pediatric patients with AML and their caregivers.

    Investigator

    Now accepting new patients View Details
  • Azacitidine and Combination Chemotherapy in Treating Infants With Acute Lymphoblastic Leukemia and KMT2A Gene Rearrangement

    This pilot phase II trial studies the side effects of azacitidine and combination chemotherapy in infants with acute lymphoblastic leukemia and KMT2A gene rearrangement. Drugs used in chemotherapy, such as methotrexate, prednisolone, daunorubicin hydrochloride, cytarabine, dexamethasone, vincristine sulfate, pegaspargase, hydrocortisone sodium succinate, azacitidine, cyclophosphamide, mercaptopurine, leucovorin calcium, and thioguanine work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug may kill more cancer cells.

    Now accepting new patients View Details
  • A Phase 2 Study of Ruxolitinib With Chemotherapy in Children With Acute Lymphoblastic Leukemia

    This is a nonrandomized study of ruxolitinib in combination with a standard multi-agent chemotherapy regimen for the treatment of B-cell acute lymphoblastic leukemia. Part 1 of the study will optimize the dose of study drug (ruxolitinib) in combination with the chemotherapy regimen. Part 2 will evaluate the efficacy of combination chemotherapy and ruxolitinib at the recommended dose determined in Part 1.

    Now accepting new patients View Details
  • A Study of Nivolumab Plus Brentuximab Vedotin in Patients Between 5 and 30 Years Old, With Hodgkin's Lymphoma (cHL), Relapsed or Refractory From First Line Treatment

    The purpose of this study is to determine whether nivolumab plus brentuximab vedotin (followed by brentuximab vedotin plus bendamustine in patient with suboptimal response) is safe and effective in treating patients with Hodgkin's lymphoma (cHL). Eligible patients are children, adolescents, and young adults relapsed or refractory to first line.

    Now accepting new patients View Details

What's New

Stanford’s APBI trial has now been expanded to include women with  ductal carcinoma in situ (DCIS). Please call 650-498-7740 for more information.