Research Projects
Reverberation Noise Reduction
Diffuse reverberation is ultrasound image noise caused by multiple reflections of the transmitted pulse before returning to the transducer, which degrades image quality and impedes the estimation of displacement or flow in techniques such as elastography and Doppler imaging. Diffuse reverberation appears as spatially incoherent noise in the channel signals, where it also degrades the performance of adaptive beamforming methods, sound speed estimation, and methods that require measurements from channel signals. We propose a custom 3D fully convolutional neural network (3DCNN) to reduce diffuse reverberation noise in the channel signals. The 3DCNN was trained with channel signals from simulations of random targets that include models of reverberation and thermal noise. It was then evaluated both on phantom and in-vivo experimental data. The 3DCNN showed improvements in image quality metrics such as generalized contrast to noise ratio (GCNR), lag one coherence (LOC) contrast-to-noise ratio (CNR) and contrast for anechoic regions in both phantom and in-vivo experiments. Visually, the contrast of anechoic regions was greatly improved. The CNR was improved in some cases, however the 3DCNN appears to strongly remove uncorrelated and low amplitude signal. In images of in-vivo carotid artery and thyroid, the 3DCNN was compared to short-lag spatial coherence (SLSC) imaging and spatial prediction filtering (FXPF) and demonstrated improved contrast, GCNR, and LOC, while FXPF only improved contrast and SLSC only improved CNR.
L. L. Brickson, D. Hyun, M. Jakovljevic and J. J. Dahl, "Reverberation Noise Suppression in Ultrasound Channel Signals Using a 3D Fully Convolutional Neural Network," in IEEE Transactions on Medical Imaging, vol. 40, no. 4, pp. 1184-1195, April 2021, doi: 10.1109/TMI.2021.3049307.