Publications

Stanford Medicine Professor of Infectious Disease and Professor of Medicine (Infectious Diseases & Geographic Medicine) and of Microbiology and Immunology

Publications

  • Development of a Definition of Postacute Sequelae of SARS-CoV-2 Infection (vol 329, pg 1934, 2023) JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION Thaweethai, T., Jolley, S. E., Karlson, E. W., Levitan, E. B., Levy, B., McComsey, G. A., McCorkell, L., Nadkarni, G. N., Parthasarathy, S., Singh, U., Walker, T. A., Selvaggi, C. A., Shinnick, D. J., Schulte, C. M., Atchley-Challenner, R., Horwitz, L. I., Foulkes, A. S., RECOVER Consortium 2024
  • 2023: Looking Back and Looking Ahead JOURNAL OF INFECTIOUS DISEASES Li, J. Z., Clancy, C. J., Singh, U., Sears, C. L. 2024: 619-620

    View details for DOI 10.1093/infdis/jiae076

    View details for Web of Science ID 001179515200001

    View details for PubMedID 38386686

  • Higher-Dose Fluvoxamine and Time to Sustained Recovery in Outpatients With COVID-19: The ACTIV-6 Randomized Clinical Trial. JAMA Stewart, T. G., Rebolledo, P. A., Mourad, A., Lindsell, C. J., Boulware, D. R., McCarthy, M. W., Thicklin, F., Garcia Del Sol, I. T., Bramante, C. T., Lenert, L. A., Lim, S., Williamson, J. C., Cardona, O. Q., Scott, J., Schwasinger-Schmidt, T., Ginde, A. A., Castro, M., Jayaweera, D., Sulkowski, M., Gentile, N., McTigue, K., Felker, G. M., DeLong, A., Wilder, R., Rothman, R. L., Collins, S., Dunsmore, S. E., Adam, S. J., Hanna, G. J., Shenkman, E., Hernandez, A. F., Naggie, S. 2023

    Abstract

    The effect of higher-dose fluvoxamine in reducing symptom duration among outpatients with mild to moderate COVID-19 remains uncertain.To assess the effectiveness of fluvoxamine, 100 mg twice daily, compared with placebo, for treating mild to moderate COVID-19.The ACTIV-6 platform randomized clinical trial aims to evaluate repurposed medications for mild to moderate COVID-19. Between August 25, 2022, and January 20, 2023, a total of 1175 participants were enrolled at 103 US sites for evaluating fluvoxamine; participants were 30 years or older with confirmed SARS-CoV-2 infection and at least 2 acute COVID-19 symptoms for 7 days or less.Participants were randomized to receive fluvoxamine, 50 mg twice daily on day 1 followed by 100 mg twice daily for 12 additional days (n = 601), or placebo (n = 607).The primary outcome was time to sustained recovery (defined as at least 3 consecutive days without symptoms). Secondary outcomes included time to death; time to hospitalization or death; a composite of hospitalization, urgent care visit, emergency department visit, or death; COVID-19 clinical progression scale score; and difference in mean time unwell. Follow-up occurred through day 28.Among 1208 participants who were randomized and received the study drug, the median (IQR) age was 50 (40-60) years, 65.8% were women, 45.5% identified as Hispanic/Latino, and 76.8% reported receiving at least 2 doses of a SARS-CoV-2 vaccine. Among 589 participants who received fluvoxamine and 586 who received placebo included in the primary analysis, differences in time to sustained recovery were not observed (adjusted hazard ratio [HR], 0.99 [95% credible interval, 0.89-1.09]; P for efficacy = .40]). Additionally, unadjusted median time to sustained recovery was 10 (95% CI, 10-11) days in both the intervention and placebo groups. No deaths were reported. Thirty-five participants reported health care use events (a priori defined as death, hospitalization, or emergency department/urgent care visit): 14 in the fluvoxamine group compared with 21 in the placebo group (HR, 0.69 [95% credible interval, 0.27-1.21]; P for efficacy = .86) There were 7 serious adverse events in 6 participants (2 with fluvoxamine and 4 with placebo) but no deaths.Among outpatients with mild to moderate COVID-19, treatment with fluvoxamine does not reduce duration of COVID-19 symptoms.ClinicalTrials.gov Identifier: NCT04885530.

    View details for DOI 10.1001/jama.2023.23363

    View details for PubMedID 37976072

  • Safety and efficacy of inhaled interferon-β1a (SNG001) in adults with mild-to-moderate COVID-19: a randomized, controlled, phase II trial. EClinicalMedicine Jagannathan, P., Chew, K. W., Giganti, M. J., Hughes, M. D., Moser, C., Main, M. J., Monk, P. D., Javan, A. C., Li, J. Z., Fletcher, C. V., McCarthy, C., Wohl, D. A., Daar, E. S., Eron, J. J., Currier, J. S., Singh, U., Smith, D. M., Fischer, W. 2023; 65: 102250

    Abstract

    With the emergence of SARS-CoV-2 variants resistant to monoclonal antibody therapies and limited global access to therapeutics, the evaluation of novel therapeutics to prevent progression to severe COVID-19 remains a critical need.Safety, clinical and antiviral efficacy of inhaled interferon-β1a (SNG001) were evaluated in a phase II randomized controlled trial on the ACTIV-2/A5401 platform (ClinicalTrials.govNCT04518410). Adult outpatients with confirmed SARS-CoV-2 infection within 10 days of symptom onset were randomized and initiated either orally inhaled nebulized SNG001 given once daily for 14 days (n = 110) or blinded pooled placebo (n = 110) between February 10 and August 18, 2021.The proportion of participants reporting premature treatment discontinuation was 9% among SNG001 and 13% among placebo participants. There were no differences between participants who received SNG001 or placebo in the primary outcomes of treatment emergent Grade 3 or higher adverse events (3.6% and 8.2%, respectively), time to symptom improvement (median 13 and 9 days, respectively), or proportion with unquantifiable nasopharyngeal SARS-CoV-2 RNA at days 3 (28% [26/93] vs. 39% [37/94], respectively), 7 (65% [60/93] vs. 66% [62/94]) and 14 (91% [86/95] vs. 91% [83/81]). There were fewer hospitalizations with SNG001 (n = 1; 1%) compared with placebo (n = 7; 6%), representing an 86% relative risk reduction (p = 0.07). There were no deaths in either arm.In this trial, SNG001 was safe and associated with a non-statistically significant decrease in hospitalization for COVID-19 pneumonia.The ACTIV-2 platform study is funded by the NIH. Research reported in this publication was supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under Award Number UM1 AI068634, UM1 AI068636 and UM1 AI106701. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

    View details for DOI 10.1016/j.eclinm.2023.102250

    View details for PubMedID 37855026

    View details for PubMedCentralID PMC10579289

  • Extracellular Vesicles and Their Impact on the Biology of Protozoan Parasites. Tropical medicine and infectious disease Sharma, M., Lozano-Amado, D., Chowdhury, D., Singh, U. 2023; 8 (9)

    Abstract

    Extracellular vesicles (EVs) are lipid-membrane-bound structures produced naturally by all cells and have a variety of functions. EVs act as vehicles for transporting important molecular signals from one cell to another. Several parasites have been shown to secrete EVs, and their biological functions have been extensively studied. EVs have been shown to facilitate communication with the host cells (such as modulation of the host's immune system or promoting attachment and invasion into the host cells) or for communication between parasitic cells (e.g., transferring drug-resistance genes or factors modulating stage conversion). It is clear that EVs play an important role in host-parasite interactions. In this review, we summarized the latest research on the EVs secreted by protozoan parasites and their role in host-parasite and parasite-parasite communications.

    View details for DOI 10.3390/tropicalmed8090448

    View details for PubMedID 37755909

  • The Tomato Brown Rugose Fruit Virus Movement Protein Gene Is a Novel Microbial Source Tracking Marker. Applied and environmental microbiology Natarajan, A., Fremin, B. J., Schmidtke, D. T., Wolfe, M. K., Zlitni, S., Graham, K. E., Brooks, E. F., Severyn, C. J., Sakamoto, K. M., Lacayo, N. J., Kuersten, S., Koble, J., Caves, G., Kaplan, I., Singh, U., Jagannathan, P., Rezvani, A. R., Bhatt, A. S., Boehm, A. B. 2023: e0058323

    Abstract

    Microbial source tracking (MST) identifies sources of fecal contamination in the environment using host-associated fecal markers. While there are numerous bacterial MST markers that can be used herein, there are few such viral markers. Here, we designed and tested novel viral MST markers based on tomato brown rugose fruit virus (ToBRFV) genomes. We assembled eight nearly complete genomes of ToBRFV from wastewater and stool samples from the San Francisco Bay Area in the United States. Next, we developed two novel probe-based reverse transcription-PCR (RT-PCR) assays based on conserved regions of the ToBRFV genome and tested the markers' sensitivities and specificities using human and non-human animal stool as well as wastewater. The ToBRFV markers are sensitive and specific; in human stool and wastewater, they are more prevalent and abundant than a commonly used viral marker, the pepper mild mottle virus (PMMoV) coat protein (CP) gene. We used the assays to detect fecal contamination in urban stormwater samples and found that the ToBRFV markers matched cross-assembly phage (crAssphage), an established viral MST marker, in prevalence across samples. Taken together, these results indicate that ToBRFV is a promising viral human-associated MST marker. IMPORTANCE Human exposure to fecal contamination in the environment can cause transmission of infectious diseases. Microbial source tracking (MST) can identify sources of fecal contamination so that contamination can be remediated and human exposures can be reduced. MST requires the use of host-associated MST markers. Here, we designed and tested novel MST markers from genomes of tomato brown rugose fruit virus (ToBRFV). The markers are sensitive and specific to human stool and highly abundant in human stool and wastewater samples.

    View details for DOI 10.1128/aem.00583-23

    View details for PubMedID 37404180

  • Researching COVID to Enhance Recovery (RECOVER) adult study protocol: Rationale, objectives, and design. PloS one Horwitz, L. I., Thaweethai, T., Brosnahan, S. B., Cicek, M. S., Fitzgerald, M. L., Goldman, J. D., Hess, R., Hodder, S. L., Jacoby, V. L., Jordan, M. R., Krishnan, J. A., Laiyemo, A. O., Metz, T. D., Nichols, L., Patzer, R. E., Sekar, A., Singer, N. G., Stiles, L. E., Taylor, B. S., Ahmed, S., Algren, H. A., Anglin, K., Aponte-Soto, L., Ashktorab, H., Bassett, I. V., Bedi, B., Bhadelia, N., Bime, C., Bind, M. C., Black, L. J., Blomkalns, A. L., Brim, H., Castro, M., Chan, J., Charney, A. W., Chen, B. K., Chen, L. Q., Chen, P., Chestek, D., Chibnik, L. B., Chow, D. C., Chu, H. Y., Clifton, R. G., Collins, S., Costantine, M. M., Cribbs, S. K., Deeks, S. G., Dickinson, J. D., Donohue, S. E., Durstenfeld, M. S., Emery, I. F., Erlandson, K. M., Facelli, J. C., Farah-Abraham, R., Finn, A. V., Fischer, M. S., Flaherman, V. J., Fleurimont, J., Fonseca, V., Gallagher, E. J., Gander, J. C., Gennaro, M. L., Gibson, K. S., Go, M., Goodman, S. N., Granger, J. P., Greenway, F. L., Hafner, J. W., Han, J. E., Harkins, M. S., Hauser, K. S., Heath, J. R., Hernandez, C. R., Ho, O., Hoffman, M. K., Hoover, S. E., Horowitz, C. R., Hsu, H., Hsue, P. Y., Hughes, B. L., Jagannathan, P., James, J. A., John, J., Jolley, S., Judd, S. E., Juskowich, J. J., Kanjilal, D. G., Karlson, E. W., Katz, S. D., Kelly, J. D., Kelly, S. W., Kim, A. Y., Kirwan, J. P., Knox, K. S., Kumar, A., Lamendola-Essel, M. F., Lanca, M., Lee-Lannotti, J. K., Lefebvre, R. C., Levy, B. D., Lin, J. Y., Logarbo, B. P., Logue, J. K., Longo, M. T., Luciano, C. A., Lutrick, K., Malakooti, S. K., Mallett, G., Maranga, G., Marathe, J. G., Marconi, V. C., Marshall, G. D., Martin, C. F., Martin, J. N., May, H. T., McComsey, G. A., McDonald, D., Mendez-Figueroa, H., Miele, L., Mittleman, M. A., Mohandas, S., Mouchati, C., Mullington, J. M., Nadkarni, G. N., Nahin, E. R., Neuman, R. B., Newman, L. T., Nguyen, A., Nikolich, J. Z., Ofotokun, I., Ogbogu, P. U., Palatnik, A., Palomares, K. T., Parimon, T., Parry, S., Parthasarathy, S., Patterson, T. F., Pearman, A., Peluso, M. J., Pemu, P., Pettker, C. M., Plunkett, B. A., Pogreba-Brown, K., Poppas, A., Porterfield, J. Z., Quigley, J. G., Quinn, D. K., Raissy, H., Rebello, C. J., Reddy, U. M., Reece, R., Reeder, H. T., Rischard, F. P., Rosas, J. M., Rosen, C. J., Rouphael, N. G., Rouse, D. J., Ruff, A. M., Saint Jean, C., Sandoval, G. J., Santana, J. L., Schlater, S. M., Sciurba, F. C., Selvaggi, C., Seshadri, S., Sesso, H. D., Shah, D. P., Shemesh, E., Sherif, Z. A., Shinnick, D. J., Simhan, H. N., Singh, U., Sowles, A., Subbian, V., Sun, J., Suthar, M. S., Teunis, L. J., Thorp, J. M., Ticotsky, A., Tita, A. T., Tragus, R., Tuttle, K. R., Urdaneta, A. E., Utz, P. J., VanWagoner, T. M., Vasey, A., Vernon, S. D., Vidal, C., Walker, T., Ward, H. D., Warren, D. E., Weeks, R. M., Weiner, S. J., Weyer, J. C., Wheeler, J. L., Whiteheart, S. W., Wiley, Z., Williams, N. J., Wisnivesky, J. P., Wood, J. C., Yee, L. M., Young, N. M., Zisis, S. N., Foulkes, A. S. 2023; 18 (6): e0286297

    Abstract

    SARS-CoV-2 infection can result in ongoing, relapsing, or new symptoms or other health effects after the acute phase of infection; termed post-acute sequelae of SARS-CoV-2 infection (PASC), or long COVID. The characteristics, prevalence, trajectory and mechanisms of PASC are ill-defined. The objectives of the Researching COVID to Enhance Recovery (RECOVER) Multi-site Observational Study of PASC in Adults (RECOVER-Adult) are to: (1) characterize PASC prevalence; (2) characterize the symptoms, organ dysfunction, natural history, and distinct phenotypes of PASC; (3) identify demographic, social and clinical risk factors for PASC onset and recovery; and (4) define the biological mechanisms underlying PASC pathogenesis.RECOVER-Adult is a combined prospective/retrospective cohort currently planned to enroll 14,880 adults aged ≥18 years. Eligible participants either must meet WHO criteria for suspected, probable, or confirmed infection; or must have evidence of no prior infection. Recruitment occurs at 86 sites in 33 U.S. states, Washington, DC and Puerto Rico, via facility- and community-based outreach. Participants complete quarterly questionnaires about symptoms, social determinants, vaccination status, and interim SARS-CoV-2 infections. In addition, participants contribute biospecimens and undergo physical and laboratory examinations at approximately 0, 90 and 180 days from infection or negative test date, and yearly thereafter. Some participants undergo additional testing based on specific criteria or random sampling. Patient representatives provide input on all study processes. The primary study outcome is onset of PASC, measured by signs and symptoms. A paradigm for identifying PASC cases will be defined and updated using supervised and unsupervised learning approaches with cross-validation. Logistic regression and proportional hazards regression will be conducted to investigate associations between risk factors, onset, and resolution of PASC symptoms.RECOVER-Adult is the first national, prospective, longitudinal cohort of PASC among US adults. Results of this study are intended to inform public health, spur clinical trials, and expand treatment options.NCT05172024.

    View details for DOI 10.1371/journal.pone.0286297

    View details for PubMedID 37352211

    View details for PubMedCentralID PMC10289397

  • Transparent Reporting at the Journal of Infectious Diseases. The Journal of infectious diseases Clancy, C. J., Li, J. Z., Singh, U., Sears, C. L. 2023

    View details for DOI 10.1093/infdis/jiad129

    View details for PubMedID 37134129

  • Diversity and Plasticity of Virulent Characteristics of Entamoeba histolytica. Tropical medicine and infectious disease Yanagawa, Y., Singh, U. 2023; 8 (5)

    Abstract

    The complexity of clinical syndromes of amebiasis, caused by the parasite Entamoeba histolytica, stems from the intricate interplay between the host immune system, the virulence of the invading parasite, and the surrounding environment. Although there is still a relative paucity of information about the precise relationship between virulence factors and the pathogenesis of Entamoeba histolytica, by accumulating data from clinical and basic research, researchers have identified essential pathogenic factors that play a critical role in the pathogenesis of amebiasis, providing important insights into disease development through animal models. Moreover, the parasite's genetic variability has been associated with differences in virulence and disease outcomes, making it important to fully understand the epidemiology and pathogenesis of amebiasis. Deciphering the true mechanism of disease progression in humans caused by this parasite is made more difficult through its ability to demonstrate both genomic and pathological plasticity. The objective of this article is to underscore the heterogeneous nature of disease states and the malleable virulence characteristics in experimental models, while also identifying persistent scientific issues that need to be addressed.

    View details for DOI 10.3390/tropicalmed8050255

    View details for PubMedID 37235303

  • Stress Response in Entamoeba histolytica Is Associated with Robust Processing of tRNA to tRNA Halves. mBio Sharma, M., Zhang, H., Ehrenkaufer, G., Singh, U. 2023: e0345022

    Abstract

    tRNA-derived fragments have been reported in many different organisms and have diverse cellular roles, such as regulating gene expression, inhibiting protein translation, silencing transposable elements, and modulating cell proliferation. In particular, tRNA halves, a class of tRNA fragments produced by the cleavage of tRNAs in the anti-codon loop, have been widely reported to accumulate under stress and regulate translation in cells. Here, we report the presence of tRNA-derived fragments in Entamoeba, with tRNA halves being the most abundant. We further established that tRNA halves accumulate in the parasites upon different stress stimuli such as oxidative stress, heat shock, and serum starvation. We also observed differential expression of tRNA halves during developmental changes of trophozoite-to-cyst conversion, with various tRNA halves accumulating during early encystation. In contrast to other systems, the stress response does not appear to be mediated by a few specific tRNA halves, as multiple tRNAs appear to be processed during the various stresses. Furthermore, we identified some tRNA-derived fragments associated with Entamoeba Argonaute proteins, EhAgo2-2 and EhAgo2-3, which have a preference for different tRNA-derived fragment species. Finally, we show that tRNA halves are packaged inside extracellular vesicles secreted by amoebas. The ubiquitous presence of tRNA-derived fragments, their association with the Argonaute proteins, and the accumulation of tRNA halves during multiple different stresses, including encystation, suggest a nuanced level of gene expression regulation mediated by different tRNA-derived fragments in Entamoeba. IMPORTANCE In the present study, we report for the first time the presence of tRNA-derived fragments in Entamoeba. tRNA-derived fragments were identified by bioinformatics analyses of small-RNA sequencing data sets from the parasites and also confirmed experimentally. We found that tRNA halves accumulated in parasites exposed to environmental stress or during the developmental process of encystation. We also found that shorter tRNA-derived fragments are bound to Entamoeba Argonaute proteins, indicating that they may have a potential role in the Argonaute-mediated RNA-interference pathway, which mediates robust gene silencing in Entamoeba. We noticed that in response to heat shock, the protein translation levels were elevated in the parasites. This effect was reversed in the presence of an analog of leucine, which also reduced the levels of the tRNA halves in the stressed cells. Our results suggest that tRNA-derived fragments in Entamoeba have a possible role in regulating gene expression during environmental stress.

    View details for DOI 10.1128/mbio.03450-22

    View details for PubMedID 36809068

  • Autoantibodies are highly prevalent in non-SARS-CoV-2 respiratory infections and critical illness. JCI insight Feng, A., Yang, E. Y., Moore, A. R., Dhingra, S., Chang, S. E., Yin, X., Pi, R., Mack, E. K., Völkel, S., Geßner, R., Gündisch, M., Neubauer, A., Renz, H., Tsiodras, S., Fragkou, P. C., Asuni, A. A., Levitt, J. E., Wilson, J. G., Leong, M., Lumb, J. H., Mao, R., Pinedo, K., Roque, J., Richards, C. M., Stabile, M., Swaminathan, G., Salagianni, M. L., Triantafyllia, V., Bertrams, W., Blish, C. A., Carette, J. E., Frankovich, J., Meffre, E., Nadeau, K. C., Singh, U., Wang, T. T., Luning Prak, E. T., Herold, S., Andreakos, E., Schmeck, B., Skevaki, C., Rogers, A. J., Utz, P. J. 2023; 8 (3)

    Abstract

    The widespread presence of autoantibodies in acute infection with SARS-CoV-2 is increasingly recognized, but the prevalence of autoantibodies in non-SARS-CoV-2 infections and critical illness has not yet been reported. We profiled IgG autoantibodies in 267 patients from 5 independent cohorts with non-SARS-CoV-2 viral, bacterial, and noninfectious critical illness. Serum samples were screened using Luminex arrays that included 58 cytokines and 55 autoantigens, many of which are associated with connective tissue diseases (CTDs). Samples positive for anti-cytokine antibodies were tested for receptor blocking activity using cell-based functional assays. Anti-cytokine antibodies were identified in > 50% of patients across all 5 acutely ill cohorts. In critically ill patients, anti-cytokine antibodies were far more common in infected versus uninfected patients. In cell-based functional assays, 11 of 39 samples positive for select anti-cytokine antibodies displayed receptor blocking activity against surface receptors for Type I IFN, GM-CSF, and IL-6. Autoantibodies against CTD-associated autoantigens were also commonly observed, including newly detected antibodies that emerged in longitudinal samples. These findings demonstrate that anti-cytokine and autoantibodies are common across different viral and nonviral infections and range in severity of illness.

    View details for DOI 10.1172/jci.insight.163150

    View details for PubMedID 36752204

  • Challenges in Harnessing Shared Within-Host Severe Acute Respiratory Syndrome Coronavirus 2 Variation for Transmission Inference. Open forum infectious diseases Walter, K. S., Kim, E., Verma, R., Altamirano, J., Leary, S., Carrington, Y. J., Jagannathan, P., Singh, U., Holubar, M., Subramanian, A., Khosla, C., Maldonado, Y., Andrews, J. R. 2023; 10 (2): ofad001

    Abstract

    The limited variation observed among severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) consensus sequences makes it difficult to reconstruct transmission linkages in outbreak settings. Previous studies have recovered variation within individual SARS-CoV-2 infections but have not yet measured the informativeness of within-host variation for transmission inference.We performed tiled amplicon sequencing on 307 SARS-CoV-2 samples, including 130 samples from 32 individuals in 14 households and 47 longitudinally sampled individuals, from 4 prospective studies with household membership data, a proxy for transmission linkage.Consensus sequences from households had limited diversity (mean pairwise distance, 3.06 single-nucleotide polymorphisms [SNPs]; range, 0-40). Most (83.1%, 255 of 307) samples harbored at least 1 intrahost single-nucleotide variant ([iSNV] median, 117; interquartile range [IQR], 17-208), above a minor allele frequency threshold of 0.2%. Pairs in the same household shared significantly more iSNVs (mean, 1.20 iSNVs; 95% confidence interval [CI], 1.02-1.39) than did pairs in different households infected with the same viral clade (mean, 0.31 iSNVs; 95% CI, .28-.34), a signal that decreases with increasingly stringent minor allele frequency thresholds. The number of shared iSNVs was significantly associated with an increased odds of household membership (adjusted odds ratio, 1.35; 95% CI, 1.23-1.49). However, the poor concordance of iSNVs detected across sequencing replicates (24.8% and 35.0% above a 0.2% and 1% threshold) confirms technical concerns that current sequencing and bioinformatic workflows do not consistently recover low-frequency within-host variants.Shared within-host variation may augment the information in consensus sequences for predicting transmission linkages. Improving sensitivity and specificity of within-host variant identification will improve the informativeness of within-host variation.

    View details for DOI 10.1093/ofid/ofad001

    View details for PubMedID 36751652

    View details for PubMedCentralID PMC9898879

  • Effect of Fluvoxamine vs Placebo on Time to Sustained Recovery in Outpatients With Mild to Moderate COVID-19: A Randomized Clinical Trial. JAMA McCarthy, M. W., Naggie, S., Boulware, D. R., Lindsell, C. J., Stewart, T. G., Felker, G. M., Jayaweera, D., Sulkowski, M., Gentile, N., Bramante, C., Singh, U., Dolor, R. J., Ruiz-Unger, J., Wilson, S., DeLong, A., Remaly, A., Wilder, R., Collins, S., Dunsmore, S. E., Adam, S. J., Thicklin, F., Hanna, G., Ginde, A. A., Castro, M., McTigue, K., Shenkman, E., Hernandez, A. F. 2023

    Abstract

    The effectiveness of fluvoxamine to shorten symptom duration or prevent hospitalization among outpatients with mild to moderate symptomatic COVID-19 is unclear.To evaluate the efficacy of low-dose fluvoxamine (50 mg twice daily) for 10 days compared with placebo for the treatment of mild to moderate COVID-19 in the US.The ongoing Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV-6) platform randomized clinical trial was designed to test repurposed medications in outpatients with mild to moderate COVID-19. A total of 1288 participants aged 30 years or older with test-confirmed SARS-CoV-2 infection and experiencing 2 or more symptoms of acute COVID-19 for 7 days or less were enrolled between August 6, 2021, and May 27, 2022, at 91 sites in the US.Participants were randomized to receive 50 mg of fluvoxamine twice daily for 10 days or placebo.The primary outcome was time to sustained recovery (defined as the third day of 3 consecutive days without symptoms). There were 7 secondary outcomes, including a composite outcome of hospitalization, urgent care visit, emergency department visit, or death through day 28.Among 1331 participants who were randomized (median age, 47 years [IQR, 38-57 years]; 57% were women; and 67% reported receiving ≥2 doses of a SARS-CoV-2 vaccine), 1288 completed the trial (674 in the fluvoxamine group and 614 in the placebo group). The median time to sustained recovery was 12 days (IQR, 11-14 days) in the fluvoxamine group and 13 days (IQR, 12-13 days) in the placebo group (hazard ratio [HR], 0.96 [95% credible interval, 0.86-1.06], posterior P = .21 for the probability of benefit [determined by an HR >1]). For the composite outcome, 26 participants (3.9%) in the fluvoxamine group were hospitalized, had an urgent care visit, had an emergency department visit, or died compared with 23 participants (3.8%) in the placebo group (HR, 1.1 [95% credible interval, 0.5-1.8], posterior P = .35 for the probability of benefit [determined by an HR <1]). One participant in the fluvoxamine group and 2 participants in the placebo group were hospitalized; no deaths occurred in either group. Adverse events were uncommon in both groups.Among outpatients with mild to moderate COVID-19, treatment with 50 mg of fluvoxamine twice daily for 10 days, compared with placebo, did not improve time to sustained recovery. These findings do not support the use of fluvoxamine at this dose and duration in patients with mild to moderate COVID-19.ClinicalTrials.gov Identifier: NCT04885530.

    View details for DOI 10.1001/jama.2022.24100

    View details for PubMedID 36633838

  • Development of a Definition of Postacute Sequelae of SARS-CoV-2 Infection. JAMA Thaweethai, T., Jolley, S. E., Karlson, E. W., Levitan, E. B., Levy, B., McComsey, G. A., McCorkell, L., Nadkarni, G. N., Parthasarathy, S., Singh, U., Walker, T. A., Selvaggi, C. A., Shinnick, D. J., Schulte, C. C., Atchley-Challenner, R., Horwitz, L. I., Foulkes, A. S., RECOVER Consortium, Alba, G. A., Alicic, R., Altman, N., Anglin, K., Argueta, U., Ashktorab, H., Baslet, G., Bassett, I. V., Bateman, L., Bedi, B., Bhattacharyya, S., Bind, M., Blomkalns, A. L., Bonilla, H., Bush, P. A., Castro, M., Chan, J., Charney, A. W., Chen, P., Chibnik, L. B., Chu, H. Y., Clifton, R. G., Costantine, M. M., Cribbs, S. K., Davila Nieves, S. I., Deeks, S. G., Duven, A., Emery, I. F., Erdmann, N., Erlandson, K. M., Ernst, K. C., Farah-Abraham, R., Farner, C. E., Feuerriegel, E. M., Fleurimont, J., Fonseca, V., Franko, N., Gainer, V., Gander, J. C., Gardner, E. M., Geng, L. N., Gibson, K. S., Go, M., Goldman, J. D., Grebe, H., Greenway, F. L., Habli, M., Hafner, J., Han, J. E., Hanson, K. A., Heath, J., Hernandez, C., Hess, R., Hodder, S. L., Hoffman, M. K., Hoover, S. E., Huang, B., Hughes, B. L., Jagannathan, P., John, J., Jordan, M. R., Katz, S. D., Kaufman, E. S., Kelly, J. D., Kelly, S. W., Kemp, M. M., Kirwan, J. P., Klein, J. D., Knox, K. S., Krishnan, J. A., Kumar, A., Laiyemo, A. O., Lambert, A. A., Lanca, M., Lee-Iannotti, J. K., Logarbo, B. P., Longo, M. T., Luciano, C. A., Lutrick, K., Maley, J. H., Marathe, J. G., Marconi, V., Marshall, G. D., Martin, C. F., Matusov, Y., Mehari, A., Mendez-Figueroa, H., Mermelstein, R., Metz, T. D., Morse, R., Mosier, J., Mouchati, C., Mullington, J., Murphy, S. N., Neuman, R. B., Nikolich, J. Z., Ofotokun, I., Ojemakinde, E., Palatnik, A., Palomares, K., Parimon, T., Parry, S., Patterson, J. E., Patterson, T. F., Patzer, R. E., Peluso, M. J., Pemu, P., Pettker, C. M., Plunkett, B. A., Pogreba-Brown, K., Poppas, A., Quigley, J. G., Reddy, U., Reece, R., Reeder, H., Reeves, W. B., Reiman, E. M., Rischard, F., Rosand, J., Rouse, D. J., Ruff, A., Saade, G., Sandoval, G. J., Schlater, S. M., Shepherd, F., Sherif, Z. A., Simhan, H., Singer, N. G., Skupski, D. W., Sowles, A., Sparks, J. A., Sukhera, F. I., Taylor, B. S., Teunis, L., Thomas, R. J., Thorp, J. M., Thuluvath, P., Ticotsky, A., Tita, A. T., Tuttle, K. R., Urdaneta, A. E., Valdivieso, D., VanWagoner, T. M., Vasey, A., Verduzco-Gutierrez, M., Wallace, Z. S., Ward, H. D., Warren, D. E., Weiner, S. J., Welch, S., Whiteheart, S. W., Wiley, Z., Wisnivesky, J. P., Yee, L. M., Zisis, S. 2023

    Abstract

    Importance: SARS-CoV-2 infection is associated with persistent, relapsing, or new symptoms or other health effects occurring after acute infection, termed postacute sequelae of SARS-CoV-2 infection (PASC), also known as long COVID. Characterizing PASC requires analysis of prospectively and uniformly collected data from diverse uninfected and infected individuals.Objective: To develop a definition of PASC using self-reported symptoms and describe PASC frequencies across cohorts, vaccination status, and number of infections.Design, Setting, and Participants: Prospective observational cohort study of adults with and without SARS-CoV-2 infection at 85 enrolling sites (hospitals, health centers, community organizations) located in 33 states plus Washington, DC, and Puerto Rico. Participants who were enrolled in the RECOVER adult cohort before April 10, 2023, completed a symptom survey 6 months or more after acute symptom onset or test date. Selection included population-based, volunteer, and convenience sampling.Exposure: SARS-CoV-2 infection.Main Outcomes and Measures: PASC and 44 participant-reported symptoms (with severity thresholds).Results: A total of 9764 participants (89% SARS-CoV-2 infected; 71% female; 16% Hispanic/Latino; 15% non-Hispanic Black; median age, 47 years [IQR, 35-60]) met selection criteria. Adjusted odds ratios were 1.5 or greater (infected vs uninfected participants) for 37 symptoms. Symptoms contributing to PASC score included postexertional malaise, fatigue, brain fog, dizziness, gastrointestinal symptoms, palpitations, changes in sexual desire or capacity, loss of or change in smell or taste, thirst, chronic cough, chest pain, and abnormal movements. Among 2231 participants first infected on or after December 1, 2021, and enrolled within 30 days of infection, 224 (10% [95% CI, 8.8%-11%]) were PASC positive at 6 months.Conclusions and Relevance: A definition of PASC was developed based on symptoms in a prospective cohort study. As a first step to providing a framework for other investigations, iterative refinement that further incorporates other clinical features is needed to support actionable definitions of PASC.

    View details for DOI 10.1001/jama.2023.8823

    View details for PubMedID 37278994

  • Turning the page: a welcome from the new leadership of the Journal of Infectious Diseases. The Journal of infectious diseases Sears, C. L., Li, J. Z., Singh, U. 2022; 227 (1): 1-3

    View details for DOI 10.1093/infdis/jiac400

    View details for PubMedID 36576495

  • Early immune markers of clinical, virological, and immunological outcomes in patients with COVID-19: a multi-omics study. eLife Hu, Z., van der Ploeg, K., Chakraborty, S., Arunachalam, P. S., Mori, D. A., Jacobson, K. B., Bonilla, H., Parsonnet, J., Andrews, J. R., Holubar, M., Subramanian, A., Khosla, C., Maldonado, Y., Hedlin, H., de la Parte, L., Press, K., Ty, M., Tan, G. S., Blish, C., Takahashi, S., Rodriguez-Barraquer, I., Greenhouse, B., Butte, A. J., Singh, U., Pulendran, B., Wang, T. T., Jagannathan, P. 2022; 11

    Abstract

    The great majority of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) infections are mild and uncomplicated, but some individuals with initially mild COVID-19 progressively develop more severe symptoms. Furthermore, there is substantial heterogeneity in SARS-CoV-2-specific memory immune responses following infection. There remains a critical need to identify host immune biomarkers predictive of clinical and immunological outcomes in SARS-CoV-2-infected patients.Leveraging longitudinal samples and data from a clinical trial (N=108) in SARS-CoV-2-infected outpatients, we used host proteomics and transcriptomics to characterize the trajectory of the immune response in COVID-19 patients. We characterized the association between early immune markers and subsequent disease progression, control of viral shedding, and SARS-CoV-2-specific T cell and antibody responses measured up to 7 months after enrollment. We further compared associations between early immune markers and subsequent T cell and antibody responses following natural infection with those following mRNA vaccination. We developed machine-learning models to predict patient outcomes and validated the predictive model using data from 54 individuals enrolled in an independent clinical trial.We identify early immune signatures, including plasma RIG-I levels, early IFN signaling, and related cytokines (CXCL10, MCP1, MCP-2, and MCP-3) associated with subsequent disease progression, control of viral shedding, and the SARS-CoV-2-specific T cell and antibody response measured up to 7 months after enrollment. We found that several biomarkers for immunological outcomes are shared between individuals receiving BNT162b2 (Pfizer-BioNTech) vaccine and COVID-19 patients. Finally, we demonstrate that machine-learning models using 2-7 plasma protein markers measured early within the course of infection are able to accurately predict disease progression, T cell memory, and the antibody response post-infection in a second, independent dataset.Early immune signatures following infection can accurately predict clinical and immunological outcomes in outpatients with COVID-19 using validated machine-learning models.Support for the study was provided from National Institute of Health/National Institute of Allergy and Infectious Diseases (NIH/NIAID) (U01 AI150741-01S1 and T32-AI052073), the Stanford's Innovative Medicines Accelerator, National Institutes of Health/National Institute on Drug Abuse (NIH/NIDA) DP1DA046089, and anonymous donors to Stanford University. Peginterferon lambda provided by Eiger BioPharmaceuticals.

    View details for DOI 10.7554/eLife.77943

    View details for PubMedID 36239699

  • Successful recruitment of monolingual Spanish speaking Latinos to university phase II and III outpatient COVID-19 clinical treatment trials in Northern California. Contemporary clinical trials Levy, V., Bengoa, R. Y., Romero, P. P., Bollyky, J., Singh, U. 2022: 106891

    Abstract

    Through a public County/University partnership, we employed a Spanish/English bilingual research coordinator to increase awareness of newly available treatments with FDA Emergency Use Authorization and clinical trial opportunities for Latino outpatients with mild to moderate COVID-19. Out of the 550 San Mateo County outpatients with COVID-19 referred to Stanford University between July 2020 and April 2022, 9.5% elected to receive monoclonal antibody EUA treatment. COVID-19 treatment trial enrollment of County patients, 5% of those recruited, was commensurate with non-County populations enrollment. Recruitment models such as ours have the potential to increase US Latino populations' recruitment in outpatient COVID-19 treatment trials and contribute to decreasing COVID-19 health disparities.

    View details for DOI 10.1016/j.cct.2022.106891

    View details for PubMedID 36002110

  • TNF-alpha+ CD4+ Tcells dominate the SARS-CoV-2 specific T cell response in COVID-19 outpatients and are associated with durable antibodies. Cell reports. Medicine van der Ploeg, K., Kirosingh, A. S., Mori, D. A., Chakraborty, S., Hu, Z., Sievers, B. L., Jacobson, K. B., Bonilla, H., Parsonnet, J., Andrews, J. R., Press, K. D., Ty, M. C., Ruiz-Betancourt, D. R., de la Parte, L., Tan, G. S., Blish, C. A., Takahashi, S., Rodriguez-Barraquer, I., Greenhouse, B., Singh, U., Wang, T. T., Jagannathan, P. 2022: 100640

    Abstract

    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific CD4+ Tcells are likely important in immunity against coronavirus 2019 (COVID-19), but our understanding of CD4+ longitudinal dynamics following infection and of specific features that correlate with the maintenance of neutralizing antibodies remains limited. Here, we characterize SARS-CoV-2-specific CD4+ Tcells in a longitudinal cohort of 109 COVID-19 outpatients enrolled during acute infection. The quality of the SARS-CoV-2-specific CD4+ response shifts from cells producing interferon gamma (IFNgamma) to tumor necrosis factor alpha (TNF-alpha) from 5days to 4months post-enrollment, with IFNgamma-IL-21-TNF-alpha+ CD4+ Tcells the predominant population detected at later time points. Greater percentages of IFNgamma-IL-21-TNF-alpha+ CD4+ Tcells on day 28 correlate with SARS-CoV-2-neutralizing antibodies measured 7months post-infection (⍴= 0.4, p= 0.01). mRNA vaccination following SARS-CoV-2 infection boosts both IFNgamma- and TNF-alpha-producing, spike-protein-specific CD4+ Tcells. These data suggest that SARS-CoV-2-specific, TNF-alpha-producing CD4+ Tcells may play an important role in antibody maintenance following COVID-19.

    View details for DOI 10.1016/j.xcrm.2022.100640

    View details for PubMedID 35588734

  • Favipiravir for treatment of outpatients with asymptomatic or uncomplicated COVID-19: a double-blind randomized, placebo-controlled, phase 2 trial. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America Holubar, M., Subramanian, A., Purington, N., Hedlin, H., Bunning, B., Walter, K. S., Bonilla, H., Boumis, A., Chen, M., Clinton, K., Dewhurst, L., Epstein, C., Jagannathan, P., Kaszynski, R. H., Panu, L., Parsonnet, J., Ponder, E. L., Quintero, O., Sefton, E., Singh, U., Soberanis, L., Truong, H., Andrews, J. R., Desai, M., Khosla, C., Maldonado, Y. 2022

    Abstract

    Favipiravir is an oral, RNA-dependent RNA polymerase inhibitor with in vitro activity against SARS-CoV2. Despite limited data, favipiravir is administered to patients with COVID-19 in several countries.We conducted a phase 2 double-blind randomized controlled outpatient trial of favipiravir in asymptomatic or mildly symptomatic adults with a positive SARS-CoV2 RT-PCR within 72 hours of enrollment. Participants were randomized 1: 1 to receive placebo or favipiravir (1800mg BID Day 1, 800 mg BID Days 2-10). The primary outcome was SARS-CoV-2 shedding cessation in a modified intention-to-treat (mITT) cohort of participants with positive enrollment RT-PCRs. Using SARS-CoV-2 amplicon-based sequencing, we assessed favipiravir's impact on mutagenesis.From July 8, 2020 - March 23, 2021, we randomized 149 participants with 116 included in the mITT cohort. The participants' mean age was 43 years (SD 12.5) and 57 (49%) were women. We found no difference in time to shedding cessation by treatment arm overall (HR 0.76 favoring placebo, 95% confidence interval [CI] 0.48-1.20) or in sub-group analyses (age, sex, high-risk comorbidities, seropositivity or symptom duration at enrollment). We observed no difference in time to symptom resolution (initial: HR 0.84, 95% CI 0.54-1.29; sustained: HR 0.87, 95% CI 0.52-1.45). We detected no difference in accumulation of transition mutations in the viral genome during treatment.Our data do not support favipiravir use at commonly used doses in outpatients with uncomplicated COVID-19. Further research is needed to ascertain if higher doses of favipiravir are effective and safe for patients with COVID-19.

    View details for DOI 10.1093/cid/ciac312

    View details for PubMedID 35446944

  • Gastrointestinal symptoms and fecal shedding of SARS-CoV-2 RNA suggest prolonged gastrointestinal infection. Med (New York, N.Y.) Natarajan, A., Zlitni, S., Brooks, E. F., Vance, S. E., Dahlen, A., Hedlin, H., Park, R. M., Han, A., Schmidtke, D. T., Verma, R., Jacobson, K. B., Parsonnet, J., Bonilla, H. F., Singh, U., Pinsky, B. A., Andrews, J. R., Jagannathan, P., Bhatt, A. S. 2022

    Abstract

    COVID-19 manifests with respiratory, systemic, and gastrointestinal (GI) symptoms.1,2 SARS-CoV-2 RNA is detected in respiratory and fecal samples, and recent reports demonstrate viral replication in both the lung and intestinal tissue.3-5 Although much is known about early fecal RNA shedding, little is known about the long term shedding, especially in those with mild COVID-19. Furthermore, most reports of fecal RNA shedding do not correlate these findings with GI symptoms.6.We analyze the dynamics of fecal RNA shedding up to 10 months after COVID-19 diagnosis in 113 individuals with mild to moderate disease. We also correlate shedding with disease symptoms.Fecal SARS-CoV-2 RNA is detected in 49.2% [95% Confidence interval = 38.2%-60.3%] of participants within the first week after diagnosis. Whereas there was no ongoing oropharyngeal SARS-CoV-2 RNA shedding in subjects at and after 4 months, 12.7% [8.5%-18.4%] of participants continued to shed SARS-CoV-2 RNA in the feces at 4 months after diagnosis and 3.8% [2.0%-7.3%] shed at 7 months. Finally, we find that GI symptoms (abdominal pain, nausea, vomiting) are associated with fecal shedding of SARS-CoV-2 RNA.The extended presence of viral RNA in feces, but not respiratory samples, along with the association of fecal viral RNA shedding with GI symptoms suggest that SARS-CoV-2 infects the GI tract, and that this infection can be prolonged in a subset of individuals with COVID-19.

    View details for DOI 10.1016/j.medj.2022.04.001

    View details for PubMedID 35434682

    View details for PubMedCentralID PMC9005383