Publications
- – NeuroImage
High-fidelity mesoscale in-vivo diffusion MRI through gSlider-BUDA and circular EPI with S-LORAKS reconstruction
Purpose: To develop a high-fidelity diffusion MRI acquisition and reconstruction framework with reduced echo-train-length for less T2* image blurring compared to typical highly accelerated echo-planar imaging (EPI) acquisitions at sub-millimeter isotropic resolution.
- – PubMed Central (PMC)
Deep Learning Initialized Compressed Sensing (Deli-CS) in Volumetric Spatio-Temporal Subspace Reconstruction
Spatio-temporal MRI methods enable whole-brain multi-parametric mapping at ultra-fast acquisition times through efficient k-space encoding, but can have very long reconstruction times, which limit their integration into clinical practice.
- – Wiley Online Library
High‐resolution motion‐ and phase‐corrected functional MRI at 7 T using shuttered multishot echo‐planar imaging
Purpose: To achieve high-resolution multishot echo-planar imaging (EPI) for functional MRI (fMRI) with reduced sensitivity to in-plane motion and between-shot phase variations.
- – Nat Commun.
Optimal deep brain stimulation sites and networks for stimulation of the fornix in Alzheimer’s disease
Deep brain stimulation (DBS) to the fornix is an investigational treatment for patients with mild Alzheimer’s Disease. Outcomes from randomized clinical trials have shown that cognitive function improved in some patients but deteriorated in others.
- – Eur Radiol
Validation of a highly accelerated post-contrast wave-controlled aliasing in parallel imaging (CAIPI) 3D-T1 MPRAGE compared to standard 3D-T1 MPRAGE for detection of intracranial enhancing lesions on 3-T MRI - European Radiology
Objectives: High-resolution post-contrast T1-weighted imaging is a workhorse sequence in the evaluation of neurological disorders. The T1-MPRAGE sequence has been widely adopted for the visualization of enhancing pathology in the brain. However, this three-dimensional (3D) acquisition is lengthy and prone to motion artifact, which often compromises diagnostic quality.
- – European Radiology
Clinical validation of Wave-CAIPI susceptibility-weighted imaging for routine brain MRI at 1.5 T
Objectives: Wave-CAIPI (Controlled Aliasing in Parallel Imaging) enables dramatic reduction in acquisition time of 3D MRI sequences such as 3D susceptibility-weighted imaging (SWI) but has not been clinically evaluated at 1.5 T. We sought to compare highly accelerated Wave-CAIPI SWI (Wave-SWI) with two alternative standard sequences, conventional three-dimensional SWI and two-dimensional T2*-weighted Gradient-Echo (T2*w-GRE), in patients undergoing routine brain MRI at 1.5 T.
- – Stroke
Detecting Silent Acute Microinfarcts in Cerebral Small Vessel Disease Using Submillimeter Diffusion-Weighted Magnetic Resonance Imaging: Preliminary Results
This research is part of a prospective observational study approved by the institutional review boards of the University Health Network and the University of Toronto. A board-certified neuroradiologist with 12 years of experience reviewed the submillimeter DWI, conventional DWI, and routine brain sequences side-by-side for each participant and identified acute and subacute microinfarcts.
Here are other specific and full publications lists: