Publications
- – Nat Methods.
Next-generation MRI scanner designed for ultra-high-resolution human brain imaging at 7 Tesla
Abstract: To increase granularity in human neuroimaging science, we designed and built a next-generation 7 Tesla magnetic resonance imaging scanner to reach ultra-high resolution by implementing several advances in hardware. To improve spatial encoding and increase the image signal-to-noise ratio, we developed a head-only asymmetric gradient coil (200 mT m-1, 900 T m-1s-1) with an additional third layer of windings.
- – Magn Reson Med
DTI‐MR fingerprinting for rapid high‐resolution whole‐brain T1, T2, proton density, ADC, and fractional anisotropy mapping
Purpose: This study aims to develop a high-efficiency and high-resolution 3D imaging approach for simultaneous mapping of multiple key tissue parameters for routine brain imaging, including T1, T2, proton density (PD), ADC, and fractional anisotropy (FA).
- – Magn Reson Med
Time‐efficient, high‐resolution 3T whole‐brain relaxometry using 3D‐QALAS with wave‐CAIPI readouts
Purpose: Volumetric, high-resolution, quantitative mapping of brain-tissue relaxation properties is hindered by long acquisition times and SNR challenges. This study combines time-efficient wave-controlled aliasing in parallel imaging (wave-CAIPI) readouts with the 3D quantification using an interleaved Look-Locker acquisition sequence with a T2 preparation pulse (3D-QALAS), enabling full-brain quantitative T1 , T2 , and proton density (PD) maps at 1.15-mm3 isotropic voxels in 3 min.
- – NeuroImage
High-fidelity mesoscale in-vivo diffusion MRI through gSlider-BUDA and circular EPI with S-LORAKS reconstruction
Purpose: To develop a high-fidelity diffusion MRI acquisition and reconstruction framework with reduced echo-train-length for less T2* image blurring compared to typical highly accelerated echo-planar imaging (EPI) acquisitions at sub-millimeter isotropic resolution.
- – PubMed Central (PMC)
Deep Learning Initialized Compressed Sensing (Deli-CS) in Volumetric Spatio-Temporal Subspace Reconstruction
Spatio-temporal MRI methods enable whole-brain multi-parametric mapping at ultra-fast acquisition times through efficient k-space encoding, but can have very long reconstruction times, which limit their integration into clinical practice.
- – Wiley Online Library
High‐resolution motion‐ and phase‐corrected functional MRI at 7 T using shuttered multishot echo‐planar imaging
Purpose: To achieve high-resolution multishot echo-planar imaging (EPI) for functional MRI (fMRI) with reduced sensitivity to in-plane motion and between-shot phase variations.
- – Nat Commun.
Optimal deep brain stimulation sites and networks for stimulation of the fornix in Alzheimer’s disease
Deep brain stimulation (DBS) to the fornix is an investigational treatment for patients with mild Alzheimer’s Disease. Outcomes from randomized clinical trials have shown that cognitive function improved in some patients but deteriorated in others.
Here are other specific and full publications lists: