Radiology Pathology Fusion

ProsRegNet: A deep learning framework for registration of MRI and histopathology images of the prostate

Journal: Medical Image Analysis
Code: github

Abstract

Purpose: Magnetic resonance imaging (MRI) is an increasingly important tool for the diagnosis and treatment of prostate cancer. However, interpretation of MRI suffers from high inter-observer variability across radiologists, thereby contributing to missed clinically significant cancers, overdiagnosed low-risk cancers, and frequent false positives. Interpretation of MRI could be greatly improved by providing radiologists with an answer key that clearly shows cancer locations on MRI. Registration of histopathology images from patients who had radical prostatectomy to pre-operative MRI allows such mapping of ground truth cancer labels onto MRI. However, traditional MRI-histopathology registration approaches are computationally expensive and require careful choices of the cost function and registration hyperparameters. This paper presents ProsRegNet, a deep learning-based pipeline to accelerate and simplify MRI-histopathology image registration in prostate cancer. Our pipeline consists of image preprocessing, estimation of affine and deformable transformations by deep neural networks, and mapping cancer labels from histopathology images onto MRI using estimated transformations. We trained our neural network using MR and histopathology images of 99 patients from our internal cohort (Cohort 1) and evaluated its performance using 53 patients from three different cohorts (an additional 12 from Cohort 1 and 41 from two public cohorts). Results show that our deep learning pipeline has achieved more accurate registration results and is at least 20 times faster than a state-of-the-art registration algorithm. This important advance will provide radiologists with highly accurate prostate MRI answer keys, thereby facilitating improvements in the detection of prostate cancer on MRI.

3D Registration of pre-surgical prostate MRI and histopathology images via super-resolution volume reconstruction

Journal: Medical Image Analysis
Code: To be released soon

Abstract

The use of MRI for prostate cancer diagnosis and treatment is increasing rapidly. However, identifying the presence and extent of cancer on MRI remains challenging, leading to high variability in detection even among expert radiologists. Improvement in cancer detection on MRI is essential to reducing this variability and maximizing the clinical utility of MRI. To date, such improvement has been limited by the lack of accurately labeled MRI datasets. Data from patients who underwent radical prostatectomy enables the spatial alignment of digitized histopathology images of the resected prostate with corresponding pre-surgical MRI. This alignment facilitates the delineation of detailed cancer labels on MRI via the projection of cancer from histopathology images onto MRI. We introduce a framework that performs 3D registration of whole-mount histopathology images to pre-surgical MRI in three steps. First, we developed a novel multi-image super-resolution generative adversarial network (miSRGAN), which learns information useful for 3D registration by producing a reconstructed 3D MRI. Second, we trained the network to learn information between histopathology slices to facilitate the application of 3D registration methods. Third, we registered the reconstructed 3D histopathology volumes to the reconstructed 3D MRI, mapping the extent of cancer from histopathology images onto MRI without the need for slice-to-slice correspondence. When compared to interpolation methods, our super-resolution reconstruction resulted in the highest PSNR relative to clinical 3D MRI (32.15 dB vs 30.16 dB for BSpline interpolation). Moreover, the registration of 3D volumes reconstructed via super-resolution for both MRI and histopathology images showed the best alignment of cancer regions when compared to (1) the state-of-the-art RAPSODI approach, (2) volumes that were not reconstructed, or (3) volumes that were reconstructed using nearest neighbor, linear, or BSpline interpolations. The improved 3D alignment of histopathology images and MRI facilitates the projection of accurate cancer labels on MRI, allowing for the development of improved MRI interpretation schemes and machine learning models to automatically detect cancer on MRI.

Registration of presurgical MRI and histopathology images from radical prostatectomy via RAPSODI

Journal: Medical Physics
Code: github

Abstract

Purpose: Magnetic resonance imaging (MRI) has great potential to improve prostate cancer diagnosis; however, subtle differences between cancer and confounding conditions render prostate MRI interpretation challenging. The tissue collected from patients who undergo radical prostatectomy provides a unique opportunity to correlate histopathology images of the prostate with preoperative MRI to accurately map the extent of cancer from histopathology images onto MRI. We seek to develop an open-source, easy-to-use platform to align presurgical MRI and histopathology images of resected prostates in patients who underwent radical prostatectomy to create accurate cancer labels on MRI.

Methods: Here, we introduce RAdiology Pathology Spatial Open-Source multi-Dimensional Integration (RAPSODI), the first open-source framework for the registration of radiology and pathology images. RAPSODI relies on three steps. First, it creates a three-dimensional (3D) reconstruction of the histopathology specimen as a digital representation of the tissue before gross sectioning. Second, RAPSODI registers corresponding histopathology and MRI slices. Third, the optimized transforms are applied to the cancer regions outlined on the histopathology images to project those labels onto the preoperative MRI.

Results: We tested RAPSODI in a phantom study where we simulated various conditions, for example, tissue shrinkage during fixation. Our experiments showed that RAPSODI can reliably correct multiple artifacts. We also evaluated RAPSODI in 157 patients from three institutions that underwent radical prostatectomy and have very different pathology processing and scanning. RAPSODI was evaluated in 907 corresponding histpathology-MRI slices and achieved a Dice coefficient of 0.97 ± 0.01 for the prostate, a Hausdorff distance of 1.99 ± 0.70 mm for the prostate boundary, a urethra deviation of 3.09 ± 1.45 mm, and a landmark deviation of 2.80 ± 0.59 mm between registered histopathology images and MRI.

Conclusion: Our robust framework successfully mapped the extent of cancer from histopathology slices onto MRI providing labels from training machine learning methods to detect cancer on MRI.

Keywords: MRI; cancer labels; histopathology; prostate cancer; registration.

Preliminary results of characterizing pulmonary inflammation in a mouse model.

Pulmonary inflammation is associated with a variety of diseases. Assessing pulmonary inflammation on in vivo imaging may facilitate the early detection and treatment of lung diseases. Although routinely used in thoracic imaging, computed tomography has thus far not been compellingly shown to characterize inflammation in vivo. Alternatively, magnetic resonance imaging (MRI) is a nonionizing radiation technique to better visualize and characterize pulmonary tissue. Prior to routine adoption of MRI for early characterization of inflammation in humans, a rigorous and quantitative characterization of the utility of MRI to identify inflammation is required. Such characterization may be achieved by considering ex vivo histology as the ground truth, since it enables the definitive spatial assessment of inflammation. In this study, the authors introduce a novel framework to integrate 2D histology, ex vivo and in vivo imaging to enable the mapping of the extent of disease from ex vivo histology onto in vivo imaging, with the goal of facilitating computerized feature analysis and interrogation of disease appearance on in vivo imaging. The authors' framework was evaluated in a preclinical preliminary study aimed to identify computer extracted features on in vivo MRI associated with chronic pulmonary inflammation.

 

Defining the spatial extent of invasive adenocarcinoma on ground glass pulmonary nodules 

We developed an approach for radiology-pathology fusion of ex vivo histology of surgically excised pulmonary nodules with pre-operative CT, to radiologically map spatial extent of the invasive adenocarcinomatous component of the nodule.

This proof-of-concept study suggests that our fusion method can enable the spatial mapping of the invasive adenocarcinomatous component from 2D histology slices onto in vivo CT.