Bio

Professional Education


  • Doctor of Philosophy, Beijing Institute Of Technology (2009)

Stanford Advisors


  • Fan Yang, Postdoctoral Faculty Sponsor

Publications

Journal Articles


  • Photo-crosslinkable PEG-Based Microribbons for Forming 3D Macroporous Scaffolds with Decoupled Niche Properties. Advanced materials Han, L., Tong, X., Yang, F. 2014; 26 (11): 1757-1762

    Abstract

    PEG-based microribbons are designed and fabricated as building blocks for constructing a 3D cell niche with independently tunable biochemical, mechanical, and topographical cues. This platform supports direct cell encapsulation, allows spatial patterning of biochemical cues, and may provide a valuable tool for facilitating the analyses of how interactive niche signaling regulates cell fate in three dimensions.

    View details for DOI 10.1002/adma.201304805

    View details for PubMedID 24347028

  • Engineering interpenetrating network hydrogels as biomimetic cell niche with independently tunable biochemical and mechanical properties. Biomaterials Tong, X., Yang, F. 2014; 35 (6): 1807-1815

    Abstract

    Hydrogels have been widely used as artificial cell niche to mimic extracellular matrix with tunable properties. However, changing biochemical cues in hydrogels developed-to-date would often induce simultaneous changes in mechanical properties, which do not support mechanistic studies on stem cell-niche interactions. Here we report the development of a PEG-based interpenetrating network (IPN), which is composed of two polymer networks that can independently and simultaneously crosslink to form hydrogels in a cell-friendly manner. The resulting IPN hydrogel allows independently tunable biochemical and mechanical properties, as well as stable and more homogeneous presentation of biochemical ligands in 3D than currently available methods. We demonstrate the potential of our IPN platform for elucidating stem cell-niche interactions by modulating osteogenic differentiation of human adipose-derived stem cells. The versatility of such IPN hydrogels is further demonstrated using three distinct and widely used polymers to form the mechanical network while keeping the biochemical network constant.

    View details for DOI 10.1016/j.biomaterials.2013.11.064

    View details for PubMedID 24331710

  • A Facile Method to Fabricate Hydrogels with Microchannel-Like Porosity for Tissue Engineering TISSUE ENGINEERING PART C-METHODS Hammer, J., Han, L., Tong, X., Yang, F. 2014; 20 (2): 169-176

    Abstract

    Hydrogels are widely used as three-dimensional (3D) tissue engineering scaffolds due to their tissue-like water content, as well as their tunable physical and chemical properties. Hydrogel-based scaffolds are generally associated with nanoscale porosity, whereas macroporosity is highly desirable to facilitate nutrient transfer, vascularization, cell proliferation and matrix deposition. Diverse techniques have been developed for introducing macroporosity into hydrogel-based scaffolds. However, most of these methods involve harsh fabrication conditions that are not cell friendly, result in spherical pore structure, and are not amenable for dynamic pore formation. Human tissues contain abundant microchannel-like structures, such as microvascular network and nerve bundles, yet fabricating hydrogels containing microchannel-like pore structures remains a great challenge. To overcome these limitations, here we aim to develop a facile, cell-friendly method for engineering hydrogels with microchannel-like porosity using stimuli-responsive microfibers as porogens. Microfibers with sizes ranging 150-200 μm were fabricated using a coaxial flow of alginate and calcium chloride solution. Microfibers containing human embryonic kidney (HEK) cells were encapsulated within a 3D gelatin hydrogel, and then exposed to ethylenediaminetetraacetic acid (EDTA) solution at varying doses and duration. Scanning electron microscopy confirmed effective dissolution of alginate microfibers after EDTA treatment, leaving well-defined, interconnected microchannel structures within the 3D hydrogels. Upon release from the alginate fibers, HEK cells showed high viability and enhanced colony formation along the luminal surfaces of the microchannels. In contrast, HEK cells in non-EDTA treated control exhibited isolated cells, which remained entrapped in alginate microfibers. Together, our results showed a facile, cell-friendly process for dynamic microchannel formation within hydrogels, which may simultaneously release cells in 3D hydrogels in a spatiotemporally controlled manner. This platform may be adapted to include other cell-friendly stimuli for porogen removal, such as Matrix metalloproteinase-sensitive peptides or photodegradable gels. While we used HEK cells in this study as proof of principle, the concept described in this study may also be used for releasing clinically relevant cell types, such as smooth muscle and endothelial cells that are useful for repairing tissues involving tubular structures.

    View details for DOI 10.1089/ten.tec.2013.0176

    View details for Web of Science ID 000330310700008

    View details for PubMedID 23745610

  • Modulating polymer chemistry to enhance non-viral gene delivery inside hydrogels with tunable matrix stiffness. Biomaterials Keeney, M., Onyiah, S., Zhang, Z., Tong, X., Han, L., Yang, F. 2013; 34 (37): 9657-9665

    Abstract

    Non-viral gene delivery holds great promise for promoting tissue regeneration, and offers a potentially safer alternative than viral vectors. Great progress has been made to develop biodegradable polymeric vectors for non-viral gene delivery in 2D culture, which generally involves isolating and modifying cells in vitro, followed by subsequent transplantation in vivo. Scaffold-mediated gene delivery may eliminate the need for the multiple-step process in vitro, and allows sustained release of nucleic acids in situ. Hydrogels are widely used tissue engineering scaffolds given their tissue-like water content, injectability and tunable biochemical and biophysical properties. However, previous attempts on developing hydrogel-mediated non-viral gene delivery have generally resulted in low levels of transgene expression inside 3D hydrogels, and increasing hydrogel stiffness further decreased such transfection efficiency. Here we report the development of biodegradable polymeric vectors that led to efficient gene delivery inside poly(ethylene glycol) (PEG)-based hydrogels with tunable matrix stiffness. Photocrosslinkable gelatin was maintained constant in the hydrogel network to allow cell adhesion. We identified a lead biodegradable polymeric vector, E6, which resulted in increased polyplex stability, DNA protection and achieved sustained high levels of transgene expression inside 3D PEG-DMA hydrogels for at least 12 days. Furthermore, we demonstrated that E6-based polyplexes allowed efficient gene delivery inside hydrogels with tunable stiffness ranging from 2 to 175 kPa, with the peak transfection efficiency observed in hydrogels with intermediate stiffness (28 kPa). The reported hydrogel-mediated gene delivery platform using biodegradable polyplexes may serve as a local depot for sustained transgene expression in situ to enhance tissue engineering across broad tissue types.

    View details for DOI 10.1016/j.biomaterials.2013.08.050

    View details for PubMedID 24011715

  • Effects of Polymer End-Group Chemistry and Order of Deposition on Controlled Protein Delivery from Layer-by-Layer Assembly BIOMACROMOLECULES Keeney, M., Mathur, M., Cheng, E., Tong, X., Yang, F. 2013; 14 (3): 794-800

    Abstract

    Layer-by-layer (LBL) assembly is an attractive platform for controlled release of biologics given its mild fabrication process and versatility in coating substrates of any shape. Proteins can be incorporated into LBL coatings by sequentially depositing oppositely charged polyelectrolytes, which self-assemble into nanoscale films on medical devices or tissue engineering scaffolds. However, previously reported LBL platforms often require the use of a few hundred layers to avoid burst release, which hinders their broad translation due to the lengthy fabrication process, cost, and batch-to-batch variability. Here we report a biodegradable LBL platform composed of only 10 layers with tunable protein release kinetics, which is an order of magnitude less than previously reported LBL platforms. We performed a combinatorial study to examine the effects of polymer chemistry and order of deposition of poly(?-amino) esters on protein release kinetics under 81 LBL assembly conditions. Using the optimal "polyelectrolyte couples" for constructing the LBL film, basic fibroblast growth factor (bFGF) was released gradually over 14 days with retained biological activity to stimulate cell proliferation. The method reported herein is applicable for coating various substrates including metals, polymers, and ceramics and may be used for a broad range of biomedical and tissue engineering applications.

    View details for DOI 10.1021/bm3018559

    View details for Web of Science ID 000316044700024

    View details for PubMedID 23360295

Stanford Medicine Resources: