Bio

Clinical Focus


  • Pain Management
  • Anesthesia

Academic Appointments


Honors & Awards


  • Award of MDA Grant for Neurotransmission Study, Muscular Dystrophy Association (2004)
  • Award of Academic Merit, University of Miami School of Medicine (2003)
  • First Prize Award for Poster Presentation, The 11th Annual Neuroscience Research Day, University of Miami (2002)
  • Predoctoral Fellowship Grant Award, American Heart Association (AHA) (2001-2003)

Professional Education


  • Board Certification, Pain Management, American Board of Anesthesiology, Pain Medicine (2013)
  • Board Certification, American Board of Anesthesiology, Anesthesia (2013)
  • Fellowship:Stanford University Hospital - Pain Medicine (07/31/2013) CA
  • Residency:Stanford University (06/30/2012) CA
  • Internship, Metrowest Medical Center/Harvard Medical School Affiliated Program, MA (2009)
  • Internship:Metrowest Medical Center (06/23/2009) MA
  • Postgraduate, University of California at San Francisco, Neuroscience (2008)
  • Medical Education:University of Miami (2003) FL
  • Residency, 1st Affiliated Hospital of Zhejiang University School of Medicine, Cardiology (1999)
  • Medical Education:Zhejiang Medical University (1997) China

Research & Scholarship

Current Research and Scholarly Interests


Clinical Interests
-Pain Medicine: Neuromodulation device therapies. CT-guided interventional procedures for trigeminal neuralgia and glossopharyngeal neuralgia . Cancer pain. Facial pain. CRPS.
-Anesthesia: Neurosurgery and ENT surgery

Research Interests:
-Medical device development
-Optogenetics
-Mechanisms of neuropathic pain
-Ion channel and diseases
-Neurotoxicity of anesthetics

Publications

Journal Articles


  • CT-Guided Percutaneous Infrazygomatic Radiofrequency Neurolysis Through Foramen Rotundum to Treat V2 Trigeminal Neuralgia Pain Medicine Huang, B., Yao, M., Feng, Z., Guo, J., Zereshki, A., Leong, M., Qian*, X. 2014
  • A Retrospective Study of Chronic Post-Surgical Pain following Thoracic Surgery: Prevalence, Risk Factors, Incidence of Neuropathic Component, and Impact on Qualify of Life. PloS one Peng, Z., Li, H., Zhang, C., Qian, X., Feng, Z., Zhu, S. 2014; 9 (2)

    Abstract

    Thoracic surgeries including thoracotomy and VATS are some of the highest risk procedures that often lead to CPSP, with or without a neuropathic component. This retrospective study aims to determine retrospectively the prevalence of CPSP following thoracic surgery, its predicting risk factors, the incidence of neuropathic component, and its impact on quality of life.Patients who underwent thoracic surgeries including thoracotomy and VATS between 01/2010 and 12/2011 at the First Affiliated Hospital, School of Medicine, Zhejiang University were first contacted and screened for CPSP following thoracic surgery via phone interview. Patients who developed CPSP were then mailed with a battery of questionnaires, including a questionnaire referenced to Maguire's research, a validated Chinese version of the ID pain questionnaire, and a SF-36 Health Survey. Logistic regression analyses were subsequently performed to identify risk factors for CPSP following thoracic surgery and its neuropathic component.The point prevalence of CPSP following thoracic surgery was 24.9% (320/1284 patients), and the point prevalence of neuropathic component of CPSP was 32.5% (86/265 patients). CPSP following thoracic surgery did not improve significantly with time. Multiple predictive factors were identified for CPSP following thoracic surgery, including age<60 years old, female gender, prolonged duration of post-operative chest tube drainage (≥4 days), options of post-operative pain management, and pre-existing hypertension. Furthermore, patients who experienced CPSP following thoracic surgery were found to have significantly decreased physical function and worse quality of life, especially those with neuropathic component.Our study demonstrated that nearly 1 out of 4 patients underwent thoracic surgery might develop CPSP, and one third of them accompanied with a neuropathic component. Early prevention as well as aggressive treatment is important for patients with CPSP following thoracic surgery to achieve a high quality of life.

    View details for DOI 10.1371/journal.pone.0090014

    View details for PubMedID 24587187

  • Optical control of neuronal excitation and inhibition using a single opsin protein, ChR2. Scientific reports Liske, H., Qian, X., Anikeeva, P., Deisseroth, K., Delp, S. 2013; 3: 3110-?

    Abstract

    The effect of electrical stimulation on neuronal membrane potential is frequency dependent. Low frequency electrical stimulation can evoke action potentials, whereas high frequency stimulation can inhibit action potential transmission. Optical stimulation of channelrhodopsin-2 (ChR2) expressed in neuronal membranes can also excite action potentials. However, it is unknown whether optical stimulation of ChR2-expressing neurons produces a transition from excitation to inhibition with increasing light pulse frequencies. Here we report optical inhibition of motor neuron and muscle activity in vivo in the cooled sciatic nerves of Thy1-ChR2-EYFP mice. We also demonstrate all-optical single-wavelength control of neuronal excitation and inhibition without co-expression of inhibitory and excitatory opsins. This all-optical system is free from stimulation-induced electrical artifacts and thus provides a new approach to investigate mechanisms of high frequency inhibition in neuronal circuits in vivo and in vitro.

    View details for DOI 10.1038/srep03110

    View details for PubMedID 24173561

  • G protein-activated inwardly rectifying potassium channels mediate depotentiation of long-term potentiation PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Chung, H. J., Ge, W., Qian, X., Wiser, O., Jan, Y. N., Jan, L. Y. 2009; 106 (2): 635-640

    Abstract

    Excitatory synapses in the brain undergo activity-dependent changes in the strength of synaptic transmission. Such synaptic plasticity as exemplified by long-term potentiation (LTP) is considered a cellular correlate of learning and memory. The presence of G protein-activated inwardly rectifying K(+) (GIRK) channels near excitatory synapses on dendritic spines suggests their possible involvement in synaptic plasticity. However, whether activity-dependent regulation of GIRK channels affects excitatory synaptic plasticity is unknown. In a companion article we have reported activity-dependent regulation of GIRK channel density in cultured hippocampal neurons that requires activity of NMDA receptors (NMDAR) and protein phosphatase-1 (PP1) and takes place within 15 min. In this study, we performed whole-cell recordings of cultured hippocampal neurons and found that NMDAR activation increases basal GIRK current and GIRK channel activation mediated by adenosine A(1) receptors, but not GABA(B) receptors. Given the similar involvement of NMDARs, adenosine A(1) receptors, and PP1 in depotentiation of LTP caused by low-frequency stimulation that immediately follows LTP-inducing high-frequency stimulation, we wondered whether NMDAR-induced increase in GIRK channel surface density and current may contribute to the molecular mechanisms underlying this specific depotentiation. Remarkably, GIRK2 null mutation or GIRK channel blockade abolishes depotentiation of LTP, demonstrating that GIRK channels are critical for depotentiation, one form of excitatory synaptic plasticity.

    View details for DOI 10.1073/pnas.0811685106

    View details for Web of Science ID 000262804000051

    View details for PubMedID 19118199

  • Neuronal activity regulates phosphorylation-dependent surface delivery of G protein-activated inwardly rectifying potassium channels PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Chung, H. J., Qian, X., Ehlers, M., Jan, Y. N., Jan, L. Y. 2009; 106 (2): 629-634

    Abstract

    G protein-activated inwardly rectifying K(+) (GIRK) channels regulate neuronal excitability by mediating inhibitory effects of G protein-coupled receptors for neurotransmitters and neuromodulators. Notwithstanding many studies reporting modulation of GIRK channel function, whether neuronal activity regulates GIRK channel trafficking remains an open question. Here we report that NMDA receptor activation in cultured dissociated hippocampal neurons elevates surface expression of the GIRK channel subunits GIRK1 and GIRK2 in the soma, dendrites, and dendritic spines within 15 min. This activity-induced increase in GIRK surface expression requires protein phosphatase-1-mediated dephosphorylation of a serine residue (Ser-9) preceding the GIRK2 Val-13/Leu-14 (VL) internalization motif, thereby promoting channel recycling. Because activation of GIRK channels hyperpolarizes neuronal membranes, the NMDA receptor-induced regulation of GIRK channel trafficking may represent a dynamic adjustment of neuronal excitability in response to inhibitory neurotransmitters and/or neuromodulators.

    View details for DOI 10.1073/pnas.0811615106

    View details for Web of Science ID 000262804000050

    View details for PubMedID 19118198

  • SK channels mediate NADPH oxidase-independent reactive oxygen species production and apoptosis in granulocytes PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Fay, A. J., Qian, X., Jan, Y. N., Jan, L. Y. 2006; 103 (46): 17548-17553

    Abstract

    Neutrophils are immune cells that bind to, engulf, and destroy bacterial and fungal pathogens in infected tissue, and their clearance by apoptosis is essential for the resolution of inflammation. Killing involves both oxidative and nonoxidative processes, the oxidative pathway requiring electrogenic production of superoxide by the membrane-bound NADPH oxidase complex. A variety of stimuli, from bacterial chemotactic peptides to complement- or IgG-opsonized microbes, can induce the production of reactive oxygen species (ROS) by neutrophils, presumably by means of NADPH oxidase. We report here that 1-ethyl-2-benzimidazolinone (1-EBIO), an activator of Ca2+-activated potassium channels of small conductance (SK) and intermediate conductance (IK), causes production of superoxide and hydrogen peroxide by neutrophils and granulocyte-differentiated PLB-985 cells. This response can be partially inhibited by the SK blocker apamin, which inhibits a Ca2+-activated K+ current in these cells. Analysis of RNA transcripts indicates that channels encoded by the SK3 gene carry this current. The effects of 1-EBIO and apamin are independent of the NADPH oxidase pathway, as demonstrated by using a PLB-985 cell line lacking the gp91phox subunit. Rather, 1-EBIO and apamin modulate mitochondrial ROS production. Consistent with the enhanced ROS production and K+ efflux mediated by 1-EBIO, we found that this SK opener increased apoptosis of PLB-985 cells. Together, these findings suggest a previously uncharacterized mechanism for the regulation of neutrophil ROS production and programmed cell death.

    View details for DOI 10.1073/pnas.0607914103

    View details for Web of Science ID 000242249400086

    View details for PubMedID 17085590

  • Intra- and intersubunit cooperativity in activation of BK channels by Ca2+ (vol 128, pg 389, 2006) JOURNAL OF GENERAL PHYSIOLOGY Qian, X., Niu, X., Magleby, K. L. 2006; 128 (5): 629-629
  • K+ channel selectivity depends on kinetic as well as thermodynamic factors PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Grabe, M., Bichet, D., Qian, X., Jan, Y. N., Jan, L. Y. 2006; 103 (39): 14361-14366

    Abstract

    Potassium channels are necessary for a number of essential biological tasks such as the generation of action potentials and setting the resting membrane potential in cells, both of which require that these channels selectively permit the passage of potassium ions while suppressing the flow of other ions. Generally, this selectivity is attributed to a narrow stretch of the channel known as the selectivity filter. Over this stretch ions are dehydrated, and the backbone oxygen atoms of the protein mimic the ion's loss of coordination by water. However, channels are long pores with spatially distinct ion-binding sites that all must be traversed during ion permeation. We have shown that selectivity of mutant Kir3.2 (GIRK2) channels can be substantially amplified by introducing acidic residues into the cavity, a binding site below the selectivity filter. Here, we carry out electrostatic calculations on homology models to quantify the degree of stabilization that these mutations have on ions in the cavity. We then construct a multiion model of ion permeation to calculate the channel's permeability to potassium relative to sodium. This kinetic model uses rates derived from the electrostatic calculations and demonstrates that nonselective electrostatic stabilization of cations in the cavity can amplify channel selectivity independently of the selectivity filter. This nonintuitive result highlights the dependence of channel properties on the entire channel architecture and suggests that selectivity may not be fully understood by focusing solely on thermodynamic considerations of ion dehydration and the energetics of the selectivity filter.

    View details for DOI 10.1073/pnas.0606662103

    View details for Web of Science ID 000240968100021

    View details for PubMedID 16983068

  • Modulation of basal and receptor-induced GIRK potassium channel activity and neuronal excitability by the mammalian PINS homolog LGN NEURON Wiser, O., Qian, X., Ehlers, M., Ja, W. W., Roberts, R. W., Reuveny, E., Jan, Y. N., Jan, L. Y. 2006; 50 (4): 561-573

    Abstract

    G protein-activated inwardly rectifying potassium (GIRK) channels mediate slow synaptic inhibition and control neuronal excitability. It is unknown whether GIRK channels are subject to regulation by guanine dissociation inhibitor (GDI) proteins like LGN, a mammalian homolog of Drosophila Partner of Inscuteable (mPINS). Here we report that LGN increases basal GIRK current but reduces GIRK activation by metabotropic transmitter receptors coupled to Gi or Go, but not Gs. Moreover, expression of its N-terminal, TPR-containing protein interaction domains mimics the effects of LGN in mammalian cells, probably by releasing sequestered endogenous LGN. In hippocampal neurons, expression of LGN, or LGN fragments that mimic or enhance LGN activity, hyperpolarizes the resting potential due to increased basal GIRK activity and reduces excitability. Using Lenti virus for LGN RNAi to reduce endogenous LGN levels in hippocampal neurons, we further show an essential role of LGN for maintaining basal GIRK channel activity and for harnessing neuronal excitability.

    View details for DOI 10.1016/j.neuron.2006.03.046

    View details for Web of Science ID 000237875200008

    View details for PubMedID 16701207

  • Linker-gating ring complex as passive spring and Ca2+-dependent machine for a voltage-and Ca2+-activated potassium channel (vol 42, pg 745, 2004) NEURON Niu, X. W., Qian, X., Magleby, K. L. 2005; 45 (4): 637-637
  • beta 1 subunits facilitate gating of BK channels by acting through the Ca2+, but not the Mg2+, activiating mechanisms PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Qian, X., Magleby, K. L. 2003; 100 (17): 10061-10066

    Abstract

    The beta1 subunit of BK (large conductance Ca2+ and voltage-activated K+) channels is essential for many key physiological processes, such as controlling the contraction of smooth muscle and the tuning of hair cells in the cochlea. Although it is known that the beta1 subunit greatly increases the open probability of BK channels, little is known about its mechanism of action. We now explore this mechanism by using channels in which the Ca2+- and Mg2+-dependent activating mechanisms have been disrupted by mutating three sites to remove the Ca2+ and Mg2+ sensitivity. We find that the presence of the beta1 subunit partially restores Ca2+ sensitivity to the triply mutated channels, but not the Mg2+ sensitivity. We also find that the beta1 subunit has no effect on the Mg2+ sensitivity of WT BK channels, in contrast to its pronounced effect of increasing the apparent Ca2+ sensitivity. These observations suggest that the beta1 subunit increases open probability by working through the Ca2+-dependent, rather than Mg2+-dependent, activating mechanisms, and that the action of the beta1 subunit is not directly on the Ca2+ binding sites, but on the allosteric machinery coupling the sites to the gate. The differential effects of the beta1 subunit on the Ca2+ and Mg2+ activation of the channel suggest that these processes act separately. Finally, we show that Mgi2+ inhibits, rather than activates, BK channels in the presence of the beta1 subunit for intermediate levels of Cai2+. This Mg2+ inhibition in the presence of the beta1 subunit provides an additional regulatory mechanism of BK channel activity.

    View details for DOI 10.1073/pnas.1731650100

    View details for Web of Science ID 000184926000079

    View details for PubMedID 12893878

  • Slo1 tail domains, but not the Ca2+ bowl, are required for the beta 1 subunit to increase the apparent Ca2+ sensitivity of BK channels JOURNAL OF GENERAL PHYSIOLOGY Qian, X., Nimigean, C. M., Niu, X. W., Moss, B. L., Magleby, K. L. 2002; 120 (6): 829-843

    Abstract

    Functional large-conductance Ca(2+)- and voltage-activated K(+) (BK) channels can be assembled from four alpha subunits (Slo1) alone, or together with four auxiliary beta1 subunits to greatly increase the apparent Ca(2+) sensitivity of the channel. We examined the structural features involved in this modulation with two types of experiments. In the first, the tail domain of the alpha subunit, which includes the RCK2 (regulator of K(+) conductance) domain and Ca(2+) bowl, was replaced with the tail domain of Slo3, a BK-related channel that lacks both a Ca(2+) bowl and high affinity Ca(2+) sensitivity. In the second, the Ca(2+) bowl was disrupted by mutations that greatly reduce the apparent Ca(2+) sensitivity. We found that the beta1 subunit increased the apparent Ca(2+) sensitivity of Slo1 channels, independently of whether the alpha subunits were expressed as separate cores (S0-S8) and tails (S9-S10) or full length, and this increase was still observed after the Ca(2+) bowl was mutated. In contrast, beta1 subunits no longer increased Ca(2+) sensitivity when Slo1 tails were replaced by Slo3 tails. The beta1 subunits were still functionally coupled to channels with Slo3 tails, as DHS-I and 17 beta-estradiol activated these channels in the presence of beta1 subunits, but not in their absence. These findings indicate that the increase in apparent Ca(2+) sensitivity induced by the beta1 subunit does not require either the Ca(2+) bowl or the linker between the RCK1 and RCK2 domains, and that Slo3 tails cannot substitute for Slo1 tails. The beta1 subunit also induced a decrease in voltage sensitivity that occurred with either Slo1 or Slo3 tails. In contrast, the beta1 subunit-induced increase in apparent Ca(2+) sensitivity required Slo1 tails. This suggests that the allosteric activation pathways for these two types of actions of the beta1 subunit may be different.

    View details for DOI 10.1085/jgp.20028692

    View details for Web of Science ID 000179670000009

    View details for PubMedID 12451052

Books and Book Chapters


  • Deep Vein Thrombosis and Pulmonary Embolism Manual of Clinical Anesthesiology Cosmin, G., Qian, X. 2011; 470-475

Stanford Medicine Resources: