Education & Certifications
-
Bachelor of Science, California State University, Fullerton, Biochemistry (2019)
The balance of hematopoietic stem cell (HSC) self-renewal and differentiation is critical for a healthy blood supply; imbalances underlie hematological diseases. The importance of HSCs and their progenitors have led to their extensive characterization at genomic and transcriptomic levels. However, the proteomics of hematopoiesis remains incompletely understood. Here we report a proteomics resource from mass spectrometry of mouse young adult and old adult mouse HSCs, multipotent progenitors and oligopotent progenitors; 12 cell types in total. We validated differential protein levels, including confirmation that Dnmt3a protein levels are undetected in young adult mouse HSCs until forced into cycle. Additionally, through integrating proteomics and RNA-sequencing datasets, we identified a subset of genes with apparent post-transcriptional repression in young adult mouse HSCs. In summary, we report proteomic coverage of young and old mouse HSCs and progenitors, with broader implications for understanding mechanisms for stem cell maintenance, niche interactions and fate determination.
View details for DOI 10.7554/eLife.62210
View details for PubMedID 33236985
View details for Web of Science ID 000551367400035
View details for DOI 10.1101/808022
View details for DOI 10.1101/836692
View details for DOI 10.1038/s41467-018-05211-7
View details for Web of Science ID 000441306000001
Macrophage-mediated programmed cell removal (PrCR) is a process essential for the clearance of unwanted (damaged, dysfunctional, aged, or harmful) cells. The detection and recognition of appropriate target cells by macrophages is a critical step for successful PrCR, but its molecular mechanisms have not been delineated. Here using the models of tissue turnover, cancer immunosurveillance, and hematopoietic stem cells, we show that unwanted cells such as aging neutrophils and living cancer cells are susceptible to "labeling" by secreted calreticulin (CRT) from macrophages, enabling their clearance through PrCR. Importantly, we identified asialoglycans on the target cells to which CRT binds to regulate PrCR, and the availability of such CRT-binding sites on cancer cells correlated with the prognosis of patients in various malignancies. Our study reveals a general mechanism of target cell recognition by macrophages, which is the key for the removal of unwanted cells by PrCR in physiological and pathophysiological processes.
View details for PubMedID 30097573
Latest information on COVID-19
Stanford Medicine is closely monitoring the outbreak of novel coronavirus (COVID-19). A new page is dedicated to the latest information and developments about COVID-19.
Racism and discrimination are direct affronts to Stanford Medicine?s values. Read our leaders? pledge on racial equity.
A leader in the biomedical revolution, Stanford Medicine has a long tradition of leadership in pioneering research, creative teaching protocols and effective clinical therapies.
An at-home COVID-19 test, designed by Stanford researchers to be easy to use and provide results within 30 minutes, will be the focus of a study funded by the Stanford Medicine Catalyst Program.
Our scientists have launched dozens of research projects as part of the global response to COVID-19. Some aim to prevent, diagnose and treat the disease; others aim to understand how it spreads and how people?s immune systems respond to it.
Latest information on COVID-19
Stanford Medicine is closely monitoring the outbreak of novel coronavirus (COVID-19). A new page is dedicated to the latest information and developments about COVID-19.
Racism and discrimination are direct affronts to Stanford Medicine?s values. Read our leaders? pledge on racial equity.
A leader in the biomedical revolution, Stanford Medicine has a long tradition of leadership in pioneering research, creative teaching protocols and effective clinical therapies.
An at-home COVID-19 test, designed by Stanford researchers to be easy to use and provide results within 30 minutes, will be the focus of a study funded by the Stanford Medicine Catalyst Program.
Our scientists have launched dozens of research projects as part of the global response to COVID-19. Some aim to prevent, diagnose and treat the disease; others aim to understand how it spreads and how people?s immune systems respond to it.