Bio

Publications

Journal Articles


  • Ultrasound Molecular Imaging in a Human CD276 Expression-Modulated Murine Ovarian Cancer Model. Clinical cancer research Lutz, A. M., Bachawal, S. V., Drescher, C. W., Pysz, M. A., Willmann, J. K., Gambhir, S. S. 2014; 20 (5): 1313-1322

    Abstract

    To develop a mouse ovarian cancer model that allows modulating the expression levels of human vascular targets in mouse xenograft tumors and to test whether expression of CD276 during tumor angiogenesis can be visualized by molecularly targeted ultrasound in vivo.CD276-expressing MILE SVEN 1 (MS1) mouse endothelial cells were engineered and used for coinjection with 2008 human ovarian cancer cells for subcutaneous xenograft tumor induction in 15 nude mice. Fourteen control mice were injected with 2008 cells only. After confirming their binding specificity in flow chamber cell attachment studies, anti-CD276 antibody-functionalized contrast microbubbles were used for in vivo CD276-targeted contrast-enhanced ultrasound imaging.CD276-targeted ultrasound imaging signal was significantly higher (P = 0.006) in mixed MS1/2008 tumors than in control tumors. Compared with control microbubbles, the ultrasound signal using CD276-targeted microbubbles was significantly higher (P = 0.002), and blocking with purified anti-CD276 antibody significantly decreased (P = 0.0096) the signal in mixed MS1/2008 tumors. Immunofluorescence analysis of the tumor tissue confirmed higher quantitative immunofluorescence signal in mixed MS1/2008 tumors than in control 2008 only tumors, but showed not significantly different (P = 0.54) microvessel density.Our novel small animal model allows for modulating the expression of human tumor-associated vascular endothelial imaging targets in a mouse host and these expression differences can be visualized noninvasively by ultrasound molecular imaging. The animal model can be applied to other human vascular targets and may facilitate the preclinical development of new imaging probes such as microbubbles targeted at human vascular markers not expressed in mice. Clin Cancer Res; 20(5); 1313-22. ©2014 AACR.

    View details for DOI 10.1158/1078-0432.CCR-13-1642

    View details for PubMedID 24389327

  • Earlier Detection of Breast Cancer with Ultrasound Molecular Imaging in a Transgenic Mouse Model CANCER RESEARCH Bachawal, S. V., Jensen, K. C., Lutz, A. M., Gambhir, S. S., Tranquart, F., Tian, L., Willmann, J. K. 2013; 73 (6): 1689-1698

    Abstract

    While there is an increasing role of ultrasound for breast cancer screening in patients with dense breast, conventional anatomical ultrasound lacks sensitivity and specificity for early breast cancer detection. In this study, we assessed the potential of ultrasound molecular imaging using clinically translatable vascular endothelial growth factor receptor type 2 (VEGFR2)-targeted microbubbles (MB(VEGFR2)) to improve the diagnostic accuracy of ultrasound in earlier detection of breast cancer and ductal carcinoma in situ (DCIS) in a transgenic mouse model [FVB/N-Tg(MMTV-PyMT)634Mul]. In vivo binding specificity studies (n = 26 tumors) showed that ultrasound imaging signal was significantly higher (P < 0.001) using MB(VEGFR2) than nontargeted microbubbles and imaging signal significantly decreased (P < 0.001) by blocking antibodies. Ultrasound molecular imaging signal significantly increased (P < 0.001) when breast tissue (n = 315 glands) progressed from normal [1.65 ± 0.17 arbitrary units (a.u.)] to hyperplasia (4.21 ± 1.16), DCIS (15.95 ± 1.31), and invasive cancer (78.1 ± 6.31) and highly correlated with ex vivo VEGFR2 expression [R(2) = 0.84; 95% confidence interval (CI), 0.72-0.91; P < 0.001]. At an imaging signal threshold of 4.6 a.u., ultrasound molecular imaging differentiated benign from malignant entities with a sensitivity of 84% (95% CI, 78-88) and specificity of 89% (95% CI, 81-94). In a prospective screening trail (n = 63 glands), diagnostic performance of detecting DCIS and breast cancer was assessed and two independent readers correctly diagnosed malignant disease in more than 95% of cases and highly agreed between each other [intraclass correlation coefficient (ICC) = 0.98; 95% CI, 97-99]. These results suggest that VEGFR2-targeted ultrasound molecular imaging allows highly accurate detection of DCIS and breast cancer in transgenic mice and may be a promising approach for early breast cancer detection in women.

    View details for DOI 10.1158/0008-5472.CAN-12-3391

    View details for Web of Science ID 000316187500006

    View details for PubMedID 23328585

  • Enhanced antiproliferative and apoptotic response to combined treatment of gamma-tocotrienol with erlotinib or gefitinib in mammary tumor cells BMC CANCER Bachawal, S. V., Wali, V. B., Sylvester, P. W. 2010; 10

    Abstract

    Aberrant ErbB receptor signaling is associated with various types of malignancies. gamma-Tocotrienol is a member of the vitamin E family of compounds that displays potent anticancer activity that is associated with suppression in ErbB receptor phosphorylation and mitogenic signaling. Erlotinib and gefitinib are tyrosine kinase inhibitors that block ErbB1 receptor activation, whereas trastuzumab is a monoclonal antibody that has been designed to specifically inhibit ErbB2 receptor activation. However, the clinical effectiveness of these agents have been disappointing because of cooperation between different ErbB family members that can rescue cancer cells from agents directed against a single ErbB receptor subtype. It was hypothesized that targeting multiple ErbB receptor subtypes with combined treatment of gamma-tocotrienol and ErbB receptor inhibitors would provide greater anticancer effects than monotherapy targeting only a single ErbB receptor subtype.Highly malignant mouse +SA mammary epithelial cells were maintained in culture on serum-free defined media containing 10 ng/ml EGF as a mitogen. Cell viability wase determined by MTT assay, whereas Western blot and immunofluorescent staining was used to determine treatment effects on ErbB receptor subtype level and activation. Treatment-induced apoptosis was determined using annexin V staining and Western blot analysis of cleaved caspase-3 and PARP levels.Treatment with 3.5 microM gamma-tocotrienol, 0.5 microM erlotinib or 1.0 microM gefitinib alone, significantly inhibited +SA tumor cell growth. Combined treatment with subeffective doses of erlotinib (0.25 microM) or gefitinib (0.5 microM) with subeffective doses of gamma-tocotrienol (0.5-3.0 microM) significantly inhibited the growth and induced apoptosis in a dose-responsive manner. Trastuzumab treatment alone or in combination had no effect on +SA cell growth and viability. Combined treatment of gamma-tocotrienol with erlotinib or gefitinib also cause a large decrease in ErbB3, ErbB4, and to a lesser extent ErbB2 receptor levels, and EGF-dependent ErbB2-4 tyrosine phosphorylation (activation), but had no effect on ErbB1 receptor levels or activation.Combination treatment of gamma-tocotrienol with specific ErbB receptor inhibitors is more effective in reducing mammary tumor cell growth and viability than high dose monotherapy, suggesting that targeting multiple ErbB receptors with combination therapy may significantly improve the therapeutic response in breast cancer patients.

    View details for DOI 10.1186/1471-2407-10-84

    View details for Web of Science ID 000275797100001

    View details for PubMedID 20211018

  • Combined gamma-Tocotrienol and Erlotinib/Gefitinib Treatment Suppresses Stat and Akt Signaling in Murine Mammary Tumor Cells ANTICANCER RESEARCH Bachawal, S. V., Wali, V. B., Sylvester, P. W. 2010; 30 (2): 429-437

    Abstract

    Heterodimer cooperation between ErbB receptors has limited clinical usefulness of receptor tyrosine kinase inhibitors (TKIs), erlotinib and gefitinib in the treatment of cancer. However, combination treatment of TKIs with gamma-tocotrienol targets multiple ErbB receptors and significantly inhibit +SA murine mammary tumor cell growth.Cell proliferation was determined by tetrazolium (MTT) assay and immunofluorescent Ki-67 staining. Western blot analysis was used to determine treatment effects on epidermal growth factor (EGF)-dependent mitogenic signaling.Combined treatment of 3 microM gamma-tocotrienol with 0.25 microM erlotinib or 0.5 microM gefitinib significantly inhibited +SA cell growth and reduced cyclin D1 and phosphorylated (active) Pdk-1, Akt, Stat3 and Stat5 levels.Combined treatment of gamma-tocotrienol with erlotinib or gefitinib prevents ErbB receptor heterodimer cooperation and inhibits EGF-dependent mitogenic signaling in +SA murine mammary tumor cells. These findings strongly suggest that combination treatment may significantly improve therapeutic responsiveness in breast cancer patients.

    View details for Web of Science ID 000275821200022

    View details for PubMedID 20332450

  • Endoplasmic reticulum stress mediates gamma-tocotrienol-induced apoptosis in mammary tumor cells APOPTOSIS Wali, V. B., Bachawal, S. V., Sylvester, P. W. 2009; 14 (11): 1366-1377

    Abstract

    gamma-Tocotrienol, a member of the vitamin E family of compounds, induces apoptosis in a variety of cancer cell types. However, previous studies have clearly demonstrated that gamma-tocotrienol-induced apoptosis in neoplastic mouse +SA mammary epithelial cells is not mediated through mitochondrial stress or death receptor apoptotic signaling. Therefore, studies were conducted to determine the role of endoplasmic reticulum (ER) stress in mediating gamma-tocotrienol-induced apoptosis in +SA mammary tumor cells. Treatment with 15-40 microM gamma-tocotrienol induced +SA cell death in a dose-responsive manner, and these effects were associated with a corresponding increase in poly (ADP-ribose) polymerase (PARP)-cleavage and activation of protein kinase-like endoplasmic reticulum kinase/eukaryotic translational initiation factor/activating transcription factor 4 (PERK/eIF2alpha/ATF-4) pathway, a marker of ER stress response. These treatments also caused a large increase in C/EBP homologous protein (CHOP) levels, a key component of ER stress mediated apoptosis that increases expression of tribbles 3 (TRB3). Knockdown of CHOP by specific siRNAs attenuated gamma-tocotrienol-induced PARP-cleavage, CHOP and TRB3 expression. gamma-Tocotrienol treatment also reduced full-length caspase-12 levels, an indication of caspase-12 cleavage and activation. Intracellular levels of 3-hydroxy-3-methylglutaryl-coenzyme A (HMGCoA) reductase, an ER-transmembrane enzyme catalyzing the synthesis of mevalonate, decreased following gamma-tocotrienol treatment, but combined treatment with mevalonate did not reverse gamma-tocotrienol-induced apoptosis, suggesting that a decrease in HMGCoA reductase activity is not required for gamma-tocotrienol induced apoptosis. These results demonstrate that ER stress apoptotic signaling is associated with gamma-tocotrienol-induced apoptosis in +SA mammary tumor cells.

    View details for DOI 10.1007/s10495-009-0406-y

    View details for Web of Science ID 000270540800011

    View details for PubMedID 19771520

  • Suppression in Mevalonate Synthesis Mediates Antitumor Effects of Combined Statin and gamma-Tocotrienol Treatment LIPIDS Wali, V. B., Bachawal, S. V., Sylvester, P. W. 2009; 44 (10): 925-934

    Abstract

    Statins directly inhibit 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) activity, while gamma-tocotrienol, an isoform of vitamin E, enhances the degradation and reduces cellular levels of HMGR in various tumor cell lines. Since treatment with statins or gamma-tocotrienol alone induced a dose-responsive inhibition, whereas combined treatment with subeffective doses of these agents resulted in a synergistic inhibition in +SA mammary tumor cell growth, studies were conducted to investigate the role of the HMGR pathway in mediating the antiproliferative effects of combined low dose statin and gamma-tocotrienol. Treatment with 8 microM simvastatin inhibited cell growth and isoprenylation of Rap1A and Rab6, and supplementation with 2 microM mevalonate reversed these effects. However, the growth inhibitory effects of 4 microM gamma-tocotrienol were not dependent upon suppression in mevalonate synthesis. Treatment with subeffective doses of simvastatin (0.25 microM), lovastatin (0.25 microM), mevastatin (0.25 microM), pravastatin (10 microM), or gamma-tocotrienol (2 muM) alone had no effect on protein prenylation or mitogenic signaling, whereas combined treatment with these agents resulted in a significant inhibition in +SA cell growth, and a corresponding decrease in total HMGR, Rap1A and Rab6 prenylation, and MAPK signaling, and mevalonate supplementation reversed these effects. These findings demonstrate that the synergistic antiproliferative effects of combined low dose statin and gamma-tocotrienol treatment are directly related to an inhibition in HMGR activity and subsequent suppression in mevalonate synthesis.

    View details for DOI 10.1007/s11745-009-3344-0

    View details for Web of Science ID 000270895100006

    View details for PubMedID 19777282

  • Combined Treatment of gamma-Tocotrienol with Statins Induce Mammary Tumor Cell Cycle Arrest in G1 EXPERIMENTAL BIOLOGY AND MEDICINE Wali, V. B., Bachawal, S. V., Sylvester, P. W. 2009; 234 (6): 639-650

    Abstract

    Statins and gamma-tocotrienol (a rare isoform of vitamin E) both inhibit 3-hydroxy-3-methylglutaryl-coenzyme A (HMGCoA) reductase activity and display anticancer activity. However, clinical application of statins has been limited by high dose toxicity. Previous studies showed that combined statin and gamma-tocotrienol treatment synergistically inhibits growth of highly malignant +SA mammary epithelial cells in culture. To investigate the mechanism mediating this growth inhibition, studies were conducted to determine the effect of combination low dose gamma-tocotrienol and statin treatment on +SA mammary tumor cell cycle progression. Treatment with 0.25 microM simvastatin, lovastatin, mevastatin, 10 microM pravastatin or 2.0 microM gamma-tocotrienol alone had no effect, while combined treatment of individual statins with gamma-tocotrienol significantly inhibited +SA cell proliferation during the 4-day culture period. Flow cytometric analysis demonstrated that combined treatment induced cell cycle arrest in G1. Additional studies showed that treatment with 0.25 microM simvastatin or 2 microM gamma-tocotrienol alone had no effect on the relative intracellular levels of cyclin D1, CDK2, CDK4 and CDK6, but combined treatment caused a large reduction in cyclin D1 and CDK2 levels. Combined treatments also caused a relatively large increase in p27, but had no effect on p21 and p15 levels, and resulted in a large reduction in retinoblastoma (Rb) protein phosphorylation at ser780 and ser807/811. Similar effects were observed following combined treatment of gamma-tocotrienol with low doses of lovastatin, mevastatin and pravastatin. These findings demonstrate that combination low dose statin and gamma-tocotrienol treatment induced mammary tumor cell cycle arrest at G1, resulting from an increase in p27 expression, and a corresponding decrease in cyclin D1, CDK2, and hypophosphorylation of Rb protein. These findings suggest that combined treatment of statins with gamma-tocotrienol may provide significant health benefits in the treatment of breast cancer in women, while avoiding myotoxicity associated with high dose statin monotherapy.

    View details for DOI 10.3181/0810-RM-300

    View details for Web of Science ID 000266770400005

    View details for PubMedID 19359655

  • Antiproliferative Triterpenes from Melaleuca ericifolia JOURNAL OF NATURAL PRODUCTS Bar, F. M., Zaghloul, A. M., Bachawal, S. V., Sylvester, P. W., Ahmad, K. F., El Sayed, K. A. 2008; 71 (10): 1787-1790

    Abstract

    Three new 28-norlupane triterpenes, 28-norlup-20(29)-en-3beta-hydroxy-17beta-hydroperoxide (1), 28-norlup-20(29)-en-3beta-hydroxy-17alpha-hydroperoxide (2), and 20 S-17beta,29-epoxy-28-norlupan-3beta-ol (3), were isolated from the leaves of Melaleuca ericifolia along with eight known pentacyclic triterpenes. The structures of the new compounds were elucidated by spectroscopic methods including 1D and 2D NMR spectroscopy and mass spectrometry. The isolated triterpenes were evaluated for antiproliferative activity against the malignant +SA mammary epithelial cell line.

    View details for DOI 10.1021/np800360a

    View details for Web of Science ID 000260384400024

    View details for PubMedID 18826277

Stanford Medicine Resources: