Zakia Rahman, M.D., is a Clinical Associate Professor, Assistant Chief at the Livermore Division of the PAVAHCS and Director of the Resident Laser and Aesthetic Clinic. Her clinical interests include geriatric dermatology, surgical dermatology, lasers, ethnic skin, fillers and neurotoxins for medical and aesthetic indications. Her research interests include lasers for medical and aesthetic indications and ethnic skin. Dr. Rahman also serves on the Stanford School of Medicine Faculty Senate and the Stanford Committee for Professional Satisfaction and Support. 

Clinical Focus

  • Aesthetic Dermatology
  • Laser Dermatology  
  • Dermatology

Academic Appointments

Professional Education

  • Residency:St Lukes-Roosevelt Columbia University (2004) NY
  • Fellowship:St Lukes-Roosevelt Columbia University (2001) NY
  • Internship:Yale - New Haven Hospital (2000) CT
  • Board Certification: Dermatology, American Board of Dermatology (2004)
  • Medical Education:University of Illinois College of Medicine (1998) IL


2016-17 Courses


All Publications

  • Lack of efficacy with 1064-nm neodymium: yttrium-aluminum-garnet laser for the treatment of onychomycosis: A randomized, controlled trial JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY Hollmig, S. T., Rahman, Z., Henderson, M. T., Rotatori, R. M., Gladstone, H., Tang, J. Y. 2014; 70 (5): 911-917


    Laser therapies have been Food and Drug Administration approved for temporary nail plate clearance; however, there is minimal evidence of their long-term efficacy.We sought to evaluate the clinical and mycological clearance of toenails treated with 1064-nm neodymium:yttrium-aluminum-garnet laser versus no treatment.This was a randomized, controlled, single-center trial comparing 2 treatments with 1064-nm neodymium:yttrium-aluminum-garnet laser (fluence of 5 J/cm(2), rate of 6 Hz) spaced 2 weeks apart versus no treatment in 27 patients (N = 125 affected nails) with clinical and mycological diagnosis of onychomycosis. At 3 months, patients were assessed with mycological cultures and proximal nail plate measurements. Patients treated with laser were also assessed with proximal nail plate measurements at 12 months.At 3 months, 33% of patients treated with laser achieved a negative mycological culture compared with 20% of the control group (P = .49), and had more proximal nail plate clearance compared with control subjects (0.44 vs 0.15 mm, P = .18), which was not statistically significant. At 12 months, there was no difference in nail plate clearance between laser versus control subjects (0.24 vs 0.15 mm, P = .59).Our study was limited by the small sample size and number of treatments.There was no significant mycological culture or clinical nail plate clearance with 1064-nm neodymium:yttrium-aluminum-garnet laser compared with control.

    View details for DOI 10.1016/j.jaad.2013.12.024

    View details for Web of Science ID 000334849800024

    View details for PubMedID 24641985

  • In vivo confocal imaging of epidermal cell migration and dermal changes post nonablative fractional resurfacing: study of the wound healing process with corroborated histopathologic evidence JOURNAL OF BIOMEDICAL OPTICS Stumpp, O. F., Bedi, V. P., Wyatt, D., Lac, D., Rahman, Z. 2009; 14 (2)


    In vivo wound healing response post nonablative fractional laser treatment is evaluated. Seven healthy subjects receive treatments with a Fraxel re:store laser system on the forearm with pulse energies ranging from 10 to 70 mJ. The treatment sites are imaged at 1-h increments up to 40 h using confocal microscope z-stacks using 10-mum-depth spacing. At least five individual microscopic treatment zones are imaged per subject, time point, and treatment energy. Images are analyzed for tissue structure and morphology to classify each lesion as healed or not healed, depending on epidermal re-epithelialization at each time point and treatment energy. Probit analysis is used to statistically determine the ED(50) and ED(84) probabilities for a positive dose response (healed lesion) as a function of treatment energy. Confocal observations reveal epidermal keratinocyte migration patterns confirmed with histological analysis using hematoxylin and eosin (HE) and lactate dehydrogenase (LDH) staining at 10 mJ at 0, 7, 16, and 24-h post-treatment. Results indicate that more time is required to conclude re-epithelialization with larger lesion sizes (all less than 500 mum) corresponding to higher treatment energies. For the entire pulse energy range tested, epidermal re-epithelialization concludes between 10 to 22-h post-treatment for ED(50) and 13 to 28 h for ED(84).

    View details for DOI 10.1117/1.3103316

    View details for Web of Science ID 000266868500042

    View details for PubMedID 19405748

  • Fractional Deep Dermal Ablation Induces Tissue Tightening LASERS IN SURGERY AND MEDICINE Rahman, Z., MacFalls, H., Jiang, K., Chan, K. F., Kelly, K., Tournas, J., Stumpp, O. F., Bedi, V., Zachary, C. 2009; 41 (2): 78-86


    Due to the significant risk profile associated with traditional ablative resurfacing, a safer and less invasive treatment approach known as fractional deep dermal ablation (FDDA) was recently developed. We report the results of the first clinical investigation of this modality for treatment of photodamaged skin.Twenty-four subjects received treatments on the inner forearm with a prototype fractional CO(2) laser device (Reliant Technologies Inc., Mountain View, CA) at settings of 5-40 mJ/MTZ and 400 MTZ/cm(2). Clinical and histological effects were assessed by study investigators 1 week, 1 month, and 3 months following treatment. Thirty subjects were then enrolled in a multi-center study for treatment of photodamage using the same device. Subjects received 1-2 treatments on the face and neck, with energies ranging from 10 to 40 mJ/MTZ and densities ranging from 400 to 1,200 MTZ/cm(2). Study investigators assessed severity of post-treatment responses during follow-up visits 48 hours, 1 week, 1 month, and 3 months following treatment. Using a standard quartile improvement scale (0-4), subjects and investigators assessed improvement in rhytides, pigmentation, texture, laxity and overall appearance 1 and 3 months post-treatment.Clinical and histologic results demonstrated that fractional delivery of a 10,600 nm CO(2) laser source offers an improved safety profile with respect to traditional ablative resurfacing, while still effectively resurfacing epidermal and dermal tissue. Forearm and facial treatments were well-tolerated with no serious adverse events observed. Eighty-three percent of subjects exhibited moderate or better overall improvement (50-100%), according to study investigator quartile scoring.FDDA treatment is a safe and promising new approach for resurfacing of epidermal and deep dermal tissue targets.

    View details for DOI 10.1002/lsm.20715

    View details for Web of Science ID 000263897200002

    View details for PubMedID 19226572

  • Fractional resurfacing for the treatment of hypopigmented scars: A pilot study DERMATOLOGIC SURGERY Glaich, A. S., Rahman, Z., Goldberg, L. H., Friedman, P. M. 2007; 33 (3): 289-293


    Treatments for hypopigmented scars have shown limited efficacy and variable safety profiles. OBJECTIVE This study evaluated the safety and efficacy of fractional resurfacing (1,550-nm Fraxel SR laser, Reliant Technologies, Mountain View, CA) for the treatment of hypopigmented scars on the face in seven patients.Seven patients with hypopigmented scars on the face received between two and four successive treatments at 4-week intervals with the 1,550-nm Fraxel SR laser. Energy settings ranged from 7 to 20 mJ and a total density of 1,000 to 2,500 microthermal zones per square centimeter. Digital photographs were taken before each treatment and at 4 weeks after the last treatment. Independent physician clinical assessments were performed.Independent physician clinical assessment 4 weeks after the final Fraxel SR laser treatment revealed improvements of 51% to 75% in hypopigmentation in six of seven patients. One patient had only 26% to 50% improvement in hypopigmentation. Additionally, clinical improvements were noted in the overall texture of the treated skin. The patient's degree of satisfaction paralleled the physician's assessment of improvement. All patients reported improvement in hypopigmentation lasting greater than 3 months after the last treatment. Side effects were limited to mild pain during the treatment and mild posttreatment erythema and edema, which resolved in 2 to 4 days.Fractional resurfacing is a potentially effective modality for the treatment of hypopigmented scarring on the face. No adverse effects were observed.

    View details for DOI 10.1111/j.1524-4725.2007.33058.x

    View details for Web of Science ID 000244518000008

    View details for PubMedID 17338685

  • In vivo histological evaluation of a novel ablative fractional resurfacing device LASERS IN SURGERY AND MEDICINE Hantash, B. M., Bedi, V. P., Kapadia, B., Rahman, Z., Jiang, K., Tanner, H., Chan, K. F., Zachary, C. B. 2007; 39 (2): 96-107


    A novel carbon dioxide (CO(2)) laser device employing ablative fractional resurfacing was tested on human skin in vivo for the first time.An investigational 30 W, 10.6 microm CO(2) laser system was focused to a 1/e(2) spot size of 120 microm to generate an array of microscopic treatment zones (MTZ) in human forearm skin. A range of pulse energies between 5 and 40 mJ was tested and lesion dimensions were assessed histologically using hematoxylin and eosin. Wound healing of the MTZ's was assessed immediately-, 2-day, 7-day, 1-month, and 3-month post treatment. The role of heat shock proteins was examined by immunohistochemistry.The investigational CO(2) laser system created a microscopic pattern of ablative and thermal injury in human skin. The epidermis and part of the dermis demonstrated columns of thermal coagulation that surrounded tapering ablative zones lined by a thin eschar layer. Changing the pulse energy from 5 to 30 mJ resulted in a greater than threefold increase in lesion depth and twofold increase in width. Expression of heat shock protein (hsp)72 was detected as early as 2 days post-treatment and diminished significantly by 3 months. In contrast, increased expression of hsp47 was first detected at 7 days and persisted at 3 months post-treatment.The thermal effects of a novel investigational ablative CO(2) laser system utilizing fractional resurfacing were characterized in human forearm skin. We confirmed our previous ex vivo findings and show for the first time in-vivo, that a controlled array of microscopic treatment zones of ablation and coagulation could be deposited in human skin by varying treatment pulse energy. Immunohistochemical studies of heat shock proteins revealed a persistent collagen remodeling response lasting at least 3 months. We successfully demonstrated the first in-vivo use of ablative fractional resurfacing (AFR) treatment on human skin.

    View details for DOI 10.1002/lsm.20468

    View details for Web of Science ID 000244609500003

    View details for PubMedID 17311274

  • The effects of pulse energy variations on the dimensions of microscopic thermal treatment zones in nonablative fractional resurfacing LASERS IN SURGERY AND MEDICINE Bedi, V. P., Chan, K. F., Sink, R. K., Hantash, B. M., Herron, G. S., Rahman, Z., Struck, S. K., Zachary, C. B. 2007; 39 (2): 145-155


    We examined the effects of pulse energy variations on the dimensions of microscopic thermal injury zones (MTZs) created on human skin ex vivo and in vivo using nonablative fractional resurfacing.A Fraxel SR laser system emitting at 1,550 nm provided an array of microscopic spots at variable densities. Pulse energies ranging from 4.5 to 40 mJ were tested on human abdominal skin ex vivo and in vivo. Tissue sections were stained with hematoxylin and eosin (H&E) or nitro blue tetrazolium chloride (NBTC) and MTZ dimensions were determined. Ex vivo and in vivo results were compared. Dosimetry analyses were made for the surface treatment coverage calculation as a function of pulse energy and collagen coagulation based on H&E stain or cell necrotic zone based on NBTC stain.Each MTZ was identified by histological detection of a distinct region of loss of tissue birefringence and hyalinization, representing collagen denaturation and cell necrosis within the irradiated field immediately, 1, 3, and 7 days after treatment. At high pulse energies, the MTZ depth could exceed 1 mm and width approached 200 microm as assessed by H&E. NBTC staining revealed viable interlesional tissue. In general, no statistically significant difference was found between in vivo and ex vivo depth and width measurements.The Fraxel SR laser system delivers pulses across a wide range of density and energy levels. We determined that increases in pulse energy led to increases in MTZ depth and width without compromising the structure or viability of interlesional tissue.

    View details for DOI 10.1002/lsm.20406

    View details for Web of Science ID 000244609500009

    View details for PubMedID 17096412

  • Fractional Laser treatment for pigmentation and texture improvement. Skin therapy letter Rahman, Z., Alam, M., Dover, J. S. 2006; 11 (9): 7-11


    Fractional laser treatment with the 1,550 nm erbium fiber laser (Fraxel Laser, Reliant Technologies) has bridged the gap between the ablative and nonablative laser modalities used to treat the epidermal and dermal signs of skin aging. By targeting water as its chromophore, the laser induces a dense array of microscopic, columnar thermal zones of tissue injury that do not perforate or impair the function of the epidermis. The significant skin remodeling that ensues can be used to treat, with limited downtime, epidermal pigmentation, melasma, and rhytides, as well as textural abnormalities that include acne-related and surgical scars.

    View details for PubMedID 17075654

Footer Links:

Stanford Medicine Resources: