Bio

Professional Education


  • Doctor of Philosophy, Stanford University, IMMUN-PHD (2015)
  • Bachelor of Arts, University of California Berkeley, Molecular and Cell Biology (2006)

Research & Scholarship

Lab Affiliations


Publications

All Publications


  • N-Carboxyanhydride Polymerization of Glycopolypeptides That Activate Antigen-Presenting Cells through Dectin-1 and Dectin-2. Angewandte Chemie (International ed. in English) Zhou, M. N., Delaveris, C. S., Kramer, J. R., Kenkel, J. A., Engleman, E. G., Bertozzi, C. R. 2018; 57 (12): 3137?42

    Abstract

    The C-type lectins dectin-1 and dectin-2 contribute to innate immunity against microbial pathogens by recognizing their foreign glycan structures. These receptors are promising targets for vaccine development and cancer immunotherapy. However, currently available agonists are heterogeneous glycoconjugates and polysaccharides from natural sources. Herein, we designed and synthesized the first chemically defined ligands for dectin-1 and dectin-2. They comprised glycopolypeptides bearing mono-, di-, and trisaccharides and were built through polymerization of glycosylated N-carboxyanhydrides. Through this approach, we achieved glycopolypeptides with high molecular weights and low dispersities. We identified structures that elicit a pro-inflammatory response through dectin-1 or dectin-2 in antigen-presenting cells. With their native proteinaceous backbones and natural glycosidic linkages, these agonists are attractive for translational applications.

    View details for DOI 10.1002/anie.201713075

    View details for PubMedID 29370452

    View details for PubMedCentralID PMC5842139

  • A Macrophage Colony-Stimulating-Factor-Producing ?? T Cell Subset Prevents Malarial Parasitemic Recurrence. Immunity Mamedov, M. R., Scholzen, A., Nair, R. V., Cumnock, K., Kenkel, J. A., Oliveira, J. H., Trujillo, D. L., Saligrama, N., Zhang, Y., Rubelt, F., Schneider, D. S., Chien, Y. H., Sauerwein, R. W., Davis, M. M. 2018; 48 (2): 350?63.e7

    Abstract

    Despite evidence that ?? Tácells play an important role during malaria, their precise role remains unclear. During murine malaria induced by Plasmodium chabaudi infection and in human P.áfalciparum infection, we found that ?? Tácells expanded rapidly after resolution of acute parasitemia, in contrast to ?? Tácells that expanded at the acute stage and then declined. Single-cell sequencing showed that TRAV15N-1 (V?6.3) ?? Tácells were clonally expanded in mice and had convergent complementarity-determiningáregion 3 sequences. These ?? Tácells expressed specific cytokines, M-CSF, CCL5, CCL3, which are known to act on myeloid cells, indicating that this ?? Tácell subset might have distinct functions. Both ?? Tácells and M-CSF were necessary for preventing parasitemic recurrence. These findings point to an M-CSF-producing ?? Tácell subset that fulfills a specialized protective role in the later stage of malaria infection when ?? Tácells have declined.

    View details for DOI 10.1016/j.immuni.2018.01.009

    View details for PubMedID 29426701

  • An Immunosuppressive Dendritic Cell Subset Accumulates at Secondary Sites and Promotes Metastasis in Pancreatic Cancer. Cancer research Kenkel, J. A., Tseng, W. W., Davidson, M. G., Tolentino, L. L., Choi, O., Bhattacharya, N., Seeley, E. S., Winer, D. A., Reticker-Flynn, N. E., Engleman, E. G. 2017; 77 (15): 4158?70

    Abstract

    Pancreatic ductal adenocarcinoma (PDAC) after complete surgical resection is often followed by distant metastatic relapse for reasons that remain unclear. In this study, we investigated how the immune response at secondary sites affects tumor spread in murine models of metastatic PDAC. Early metastases were associated with dense networks of CD11b+CD11c+MHC-II+CD24+CD64lowF4/80lowdendritic cells (DC), which developed from monocytes in response to tumor-released GM-CSF. These cells uniquely expressed MGL2 and PD-L2 in the metastatic microenvironment and preferentially induced the expansion of T regulatory cells (Treg)in vitroandin vivoTargeted depletion of this DC population inMgl2DTRhosts activated cytotoxic lymphocytes, reduced Tregs, and inhibited metastasis development. Moreover, blocking PD-L2 selectively activated CD8 T cells at secondary sites and suppressed metastasis, suggesting that the DCs use this particular pathway to inhibit CD8 T-cell-mediated tumor immunity. Phenotypically similar DCs accumulated at primary and secondary sites in other models and in human PDAC. These studies suggest that a discrete DC subset both expands Tregs and suppresses CD8 T cells to establish an immunosuppressive microenvironment conducive to metastasis formation. Therapeutic strategies to block the accumulation and immunosuppressive activity of such cells may help prevent PDAC progression and metastatic relapse after surgical resection.Cancer Res; 77(15); 4158-70. ę2017 AACR.

    View details for DOI 10.1158/0008-5472.CAN-16-2212

    View details for PubMedID 28611041

    View details for PubMedCentralID PMC5550516

  • Restoring Retinoic Acid Attenuates Intestinal Inflammation and Tumorigenesis in APCMin/+ Mice. Cancer immunology research Penny, H. L., Prestwood, T. R., Bhattacharya, N., Sun, F., Kenkel, J. A., Davidson, M. G., Shen, L., Zuniga, L. A., Seeley, E. S., Pai, R., Choi, O., Tolentino, L., Wang, J., Napoli, J. L., Engleman, E. G. 2016; 4 (11): 917-926

    Abstract

    Chronic intestinal inflammation accompanies familial adenomatous polyposis (FAP) and is a major risk factor for colorectal cancer in patients with this disease, but the cause of such inflammation is unknown. Because retinoic acid (RA) plays a critical role in maintaining immune homeostasis in the intestine, we hypothesized that altered RA metabolism contributes to inflammation and tumorigenesis in FAP. To assess this hypothesis, we analyzed RA metabolism in the intestines of patients with FAP as well as APC(Min/+) mice, a model that recapitulates FAP in most respects. We also investigated the impact of intestinal RA repletion and depletion on tumorigenesis and inflammation in APC(Min/+) mice. Tumors from both FAP patients and APC(Min/+) mice displayed striking alterations in RA metabolism that resulted in reduced intestinal RA. APC(Min/+) mice placed on a vitamin A-deficient diet exhibited further reductions in intestinal RA with concomitant increases in inflammation and tumor burden. Conversely, restoration of RA by pharmacologic blockade of the RA-catabolizing enzyme CYP26A1 attenuated inflammation and diminished tumor burden. To investigate the effect of RA deficiency on the gut immune system, we studied lamina propria dendritic cells (LPDC) because these cells play a central role in promoting tolerance. APC(Min/+) LPDCs preferentially induced Th17 cells, but reverted to inducing Tregs following restoration of intestinal RA in vivo or direct treatment of LPDCs with RA in vitro These findings demonstrate the importance of intestinal RA deficiency in tumorigenesis and suggest that pharmacologic repletion of RA could reduce tumorigenesis in FAP patients. Cancer Immunol Res; 4(11); 917-26. ę2016 AACR.

    View details for PubMedID 27638841

    View details for PubMedCentralID PMC5378314

  • Normalizing Microbiota-Induced Retinoic Acid Deficiency Stimulates Protective CD8(+) T Cell-Mediated Immunity in Colorectal Cancer. Immunity Bhattacharya, N., Yuan, R., Prestwood, T. R., Penny, H. L., DiMaio, M. A., Reticker-Flynn, N. E., Krois, C. R., Kenkel, J. A., Pham, T. D., Carmi, Y., Tolentino, L., Choi, O., Hulett, R., Wang, J., Winer, D. A., Napoli, J. L., Engleman, E. G. 2016; 45 (3): 641-655

    Abstract

    Although all-trans-retinoic acid (atRA) is a key regulator of intestinal immunity, its role in colorectal cancer (CRC) is unknown. We found that mice with colitis-associated CRC had a marked deficiency in colonic atRA due to alterations in atRA metabolism mediated by microbiota-induced intestinal inflammation. Human ulcerative colitis (UC), UC-associated CRC, and sporadic CRC specimens have similar alterations in atRA metabolic enzymes, consistent with reduced colonic atRA. Inhibition of atRA signaling promoted tumorigenesis, whereas atRA supplementation reduced tumor burden. The benefit of atRA treatment was mediated by cytotoxic CD8(+) Tácells, which were activated due to MHCI upregulation on tumor cells. Consistent with these findings, increased colonic expression of the atRA-catabolizing enzyme, CYP26A1, correlated with reduced frequencies of tumoral cytotoxic CD8(+) Tácells and with worse disease prognosis in human CRC. These results reveal a mechanism by which microbiota drive colon carcinogenesis and highlight atRA metabolism as a therapeutic target for CRC.

    View details for DOI 10.1016/j.immuni.2016.08.008

    View details for PubMedID 27590114

    View details for PubMedCentralID PMC5132405

  • Nucleic Acid-Targeting Pathways Promote Inflammation in Obesity-Related Insulin Resistance. Cell reports Revelo, X. S., Ghazarian, M., Chng, M. H., Luck, H., Kim, J. H., Zeng, K., Shi, S. Y., Tsai, S., Lei, H., Kenkel, J., Liu, C. L., Tangsombatvisit, S., Tsui, H., Sima, C., Xiao, C., Shen, L., Li, X., Jin, T., Lewis, G. F., Woo, M., Utz, P. J., Glogauer, M., Engleman, E., Winer, S., Winer, D. A. 2016; 16 (3): 717-730

    Abstract

    Obesity-related inflammation of metabolic tissues, including visceral adipose tissue (VAT) and liver, are key factors in the development of insulin resistance (IR), though many of the contributing mechanisms remain unclear. We show that nucleic-acid-targeting pathways downstream of extracellular trap (ET) formation, unmethylated CpG DNA, or ribonucleic acids drive inflammation in IR. High-fat diet (HFD)-fed mice show increased release of ETs in VAT, decreased systemic clearance of ETs, and increased autoantibodies against conserved nuclear antigens. In HFD-fed mice, this excess of nucleic acids and related protein antigens worsens metabolic parameters through a number of mechanisms, including activation of VAT macrophages and expansion of plasmacytoid dendritic cells (pDCs) in the liver. Consistently, HFD-fed mice lacking critical responders of nucleic acid pathways, Toll-like receptors (TLR)7 and TLR9, show reduced metabolic inflammation and improved glucose homeostasis. Treatment of HFD-fed mice with inhibitors of ET formation or a TLR7/9 antagonist improves metabolic disease. These findings reveal a pathogenic role for nucleic acid targeting as a driver of metabolic inflammation in IR.

    View details for DOI 10.1016/j.celrep.2016.06.024

    View details for PubMedID 27373163

  • Ablative Tumor Radiation Can Change the Tumor Immune Cell Microenvironment to Induce Durable Complete Remissions. Clinical cancer research Filatenkov, A., Baker, J., Mueller, A. M., Kenkel, J., Ahn, G., Dutt, S., Zhang, N., Kohrt, H., Jensen, K., Dejbakhsh-Jones, S., Shizuru, J. A., Negrin, R. N., Engleman, E. G., Strober, S. 2015; 21 (16): 3727-3739

    Abstract

    The goals of the study were to elucidate the immune mechanisms that contribute to desirable complete remissions of murine colon tumors treated with single radiation dose of 30 Gy. This dose is at the upper end of the ablative range used clinically to treat advanced or metastatic colorectal, liver, and non-small cell lung tumors.Changes in the tumor immune microenvironment of single tumor nodules exposed to radiation were studied using 21-day (>1 cm in diameter) CT26 and MC38 colon tumors. These are well-characterized weakly immunogenic tumors.We found that the high-dose radiation transformed the immunosuppressive tumor microenvironment resulting in an intense CD8(+) T-cell tumor infiltrate, and a loss of myeloid-derived suppressor cells (MDSC). The change was dependent on antigen cross-presenting CD8(+) dendritic cells, secretion of IFN?, and CD4(+)T cells expressing CD40L. Antitumor CD8(+) T cells entered tumors shortly after radiotherapy, reversed MDSC infiltration, and mediated durable remissions in an IFN?-dependent manner. Interestingly, extended fractionated radiation regimen did not result in robust CD8(+) T-cell infiltration.For immunologically sensitive tumors, these results indicate that remissions induced by a short course of high-dose radiotherapy depend on the development of antitumor immunity that is reflected by the nature and kinetics of changes induced in the tumor cell microenvironment. These results suggest that systematic examination of the tumor immune microenvironment may help in optimizing the radiation regimen used to treat tumors by adding a robust immune response. Clin Cancer Res; 21(16); 3727-39. ę2015 AACR.

    View details for DOI 10.1158/1078-0432.CCR-14-2824

    View details for PubMedID 25869387

    View details for PubMedCentralID PMC4537844

  • Allogeneic IgG combined with dendritic cell stimuli induce antitumour T-cell immunity NATURE Carmi, Y., Spitzer, M. H., Linde, I. L., Burt, B. M., Prestwood, T. R., Perlman, N., Davidson, M. G., Kenkel, J. A., Segal, E., Pusapati, G. V., Bhattacharya, N., Engleman, E. G. 2015; 521 (7550): 99-U254

    View details for DOI 10.1038/nature14424

    View details for Web of Science ID 000354040900041

    View details for PubMedID 25924063

  • In Vivo T Cell Activation Induces the Formation of CD209(+) PDL-2(+) Dendritic Cells PLOS ONE Davidson, M. G., Alonso, M. N., Kenkel, J. A., Suhoski, M. M., Gonzalez, J. C., Yuan, R., Engleman, E. G. 2013; 8 (10)

    View details for DOI 10.1371/journal.pone.0076258

    View details for Web of Science ID 000325434500056

    View details for PubMedID 24098455

  • Th17 cells induce Th1-polarizing monocyte-derived dendritic cells. Journal of immunology Davidson, M. G., Alonso, M. N., Yuan, R., Axtell, R. C., Kenkel, J. A., Suhoski, M. M., Gonzßlez, J. C., Steinman, L., Engleman, E. G. 2013; 191 (3): 1175-1187

    Abstract

    In chronically inflamed tissues, such as those affected by autoimmune disease, activated Th cells often colocalize with monocytes. We investigate in this study how murine Th cells influence the phenotype and function of monocytes. The data demonstrate that Th1, Th2, and Th17 subsets promote the differentiation of autologous monocytes into MHC class II(+), CD11b(+), CD11c(+) DC that we call DCTh. Although all Th subsets induce the formation of DCTh, activated Th17 cells uniquely promote the formation of IL-12/IL-23-producing DCTh (DCTh17) that can polarize both naive and Th17 cells to a Th1 phenotype. In the inflamed CNS of mice with Th17-mediated experimental autoimmune encephalomyelitis, Th cells colocalize with DC, as well as monocytes, and the Th cells obtained from these lesions drive the formation of DCTh that are phenotypically indistinguishable from DCTh17 and polarize naive T cells toward a Th1 phenotype. These results suggest that DCTh17 are critical in the interplay of Th17- and Th1-mediated responses and may explain the previous finding that IL-17-secreting Th cells become IFN-?-secreting Th1 cells in experimental autoimmune encephalomyelitis and other autoimmune disorders.

    View details for DOI 10.4049/jimmunol.1203201

    View details for PubMedID 23794631

    View details for PubMedCentralID PMC3954848

  • B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies NATURE MEDICINE Winer, D. A., Winer, S., Shen, L., Wadia, P. P., Yantha, J., Paltser, G., Tsui, H., Wu, P., Davidson, M. G., Alonso, M. N., Leong, H. X., Glassford, A., Caimol, M., Kenkel, J. A., Tedder, T. F., McLaughlin, T., Miklos, D. B., Dosch, H., Engleman, E. G. 2011; 17 (5): 610-U134

    Abstract

    Chronic inflammation characterized by T cell and macrophage infiltration of visceral adipose tissue (VAT) is a hallmark of obesity-associated insulin resistance and glucose intolerance. Here we show a fundamental pathogenic role for B cells in the development of these metabolic abnormalities. B cells accumulate in VAT in diet-induced obese (DIO) mice, and DIO mice lacking B cells are protected from disease despite weight gain. B cell effects on glucose metabolism are mechanistically linked to the activation of proinflammatory macrophages and T cells and to the production of pathogenic IgG antibodies. Treatment with a B cell-depleting CD20 antibody attenuates disease, whereas transfer of IgG from DIO mice rapidly induces insulin resistance and glucose intolerance. Moreover, insulin resistance in obese humans is associated with a unique profile of IgG autoantibodies. These results establish the importance of B cells and adaptive immunity in insulin resistance and suggest new diagnostic and therapeutic modalities for managing the disease.

    View details for DOI 10.1038/nm.2353

    View details for Web of Science ID 000290250400038

    View details for PubMedID 21499269

    View details for PubMedCentralID PMC3270885

  • Development of an Orthotopic Model of Invasive Pancreatic Cancer in an Immunocompetent Murine Host CLINICAL CANCER RESEARCH Tseng, W. W., Winer, D., Kenkel, J. A., Choi, O., Shain, A. H., Pollack, J. R., French, R., Lowy, A. M., Engleman, E. G. 2010; 16 (14): 3684-3695

    Abstract

    The most common preclinical models of pancreatic adenocarcinoma utilize human cells or tissues that are xenografted into immunodeficient hosts. Several immunocompetent, genetically engineered mouse models of pancreatic cancer exist; however, tumor latency and disease progression in these models are highly variable. We sought to develop an immunocompetent, orthotopic mouse model of pancreatic cancer with rapid and predictable growth kinetics.Cell lines with epithelial morphology were derived from liver metastases obtained from Kras(G12D/+);LSL-Trp53(R172H/+);Pdx-1-Cre mice. Tumor cells were implanted in the pancreas of immunocompetent, histocompatible B6/129 mice, and the mice were monitored for disease progression. Relevant tissues were harvested for histologic, genomic, and immunophenotypic analysis.All mice developed pancreatic tumors by two weeks. Invasive disease and liver metastases were noted by six to eight weeks. Histologic examination of tumors showed cytokeratin-19-positive adenocarcinoma with regions of desmoplasia. Genomic analysis revealed broad chromosomal changes along with focal gains and losses. Pancreatic tumors were infiltrated with dendritic cells, myeloid-derived suppressor cells, macrophages, and T lymphocytes. Survival was decreased in RAG(-/-) mice, which are deficient in T cells, suggesting that an adaptive immune response alters the course of disease in wild-type mice.We have developed a rapid, predictable orthotopic model of pancreatic adenocarcinoma in immunocompetent mice that mimics human pancreatic cancer with regard to genetic mutations, histologic appearance, and pattern of disease progression. This model highlights both the complexity and relevance of the immune response to invasive pancreatic cancer and may be useful for the preclinical evaluation of new therapeutic agents.

    View details for DOI 10.1158/1078-0432.CCR-09-2384

    View details for Web of Science ID 000279903100017

    View details for PubMedID 20534740

    View details for PubMedCentralID PMC3085509

  • Innate and adaptive immune response to apoptotic cells International Workshop on Pathophysiology of Autoimmune Disease Peng, Y., Martin, D. A., Kenkel, J., Zhang, K., Ogden, C. A., Elkon, K. B. ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD. 2007: 303?9

    Abstract

    The immune system is constantly exposed to dying cells, most of which arise during central tolerance and from effete circulating immune cells. Under homeostatic conditions, phagocytes (predominantly macrophages and dendritic cells) belonging to the innate immune system, rapidly ingest cells and their debris. Apoptotic cell removal requires recognition of altered self on the apoptotic membrane, a process which is facilitated by natural antibodies and serum opsonins. Recognition, may be site and context specific. Uptake and ingestion of apoptotic cells promotes an immunosuppressive environment that avoids inflammatory responses to self-antigens. However, it does not preclude a T cell response and it is likely that constant exposure to self-antigen, particularly by immature dendritic cells, leads to T cell tolerance. Tolerance occurs by several different mechanisms including anergy and deletion (for CD8+T cells) and induction of T regulatory cells (for CD4+T cells). Failed apoptotic cell clearance promotes immune responses to self-antigens, especially when the cellular contents are leaked from the cell (necrosis). Inflammatory responses may be induced by nucleic acid stimulation of Toll like receptors and other immune sensors, specific intracellular proteins and non-protein (uric acid) stimulation of inflammasomes.

    View details for DOI 10.1016/j.jaut.2007.07.017

    View details for Web of Science ID 000251338000015

    View details for PubMedID 17888627

  • Autoimmunity stimulated by adoptively transferred dendriticis cells is initiated by both alpha beta and gamma delta T cells but does not require MyD88 signaling JOURNAL OF IMMUNOLOGY Martin, D. A., Zhang, K., Kenkel, J., Hughes, G., Clark, E., Davidson, A., Elkon, K. B. 2007; 179 (9): 5819-5828

    Abstract

    Vaccination of nonautoimmune prone mice with syngeneic dendritic cells (DC) readily induces anti-DNA autoantibodies but does not trigger systemic disease. We observed that anti-DNA autoantibody generation absolutely required alphabeta T cells and that gammadelta T cells also contributed to the response, but that regulatory T cells restrained autoantibody production. Although both NZB/W F(1) mice and DC vaccinated C57/BL6 mice produced autoantibodies against dsDNA, vaccinated mice had higher levels of Abs against H1 histone and lower levels of antinucleosome Abs than NZB/W F(1) mice. Despite a 100-fold increase in IL-12 and Th1 skewing to a foreign Ag, OVA, synergistic TLR activation of DC in vitro failed to augment anti-DNA Abs or promote class switching beyond that induced by LPS alone. TLR stimulation was not absolutely required for the initial loss of B cell tolerance because anti-DNA levels were similar when wild-type (WT) or MyD88-deficient DC were used for vaccination or WT and MyD88-deficient recipients were vaccinated with WT DC. In contrast, systemic administration of LPS, augmented anti-DNA Ab levels and promoted class switching, and this response was dependent on donor DC signaling via MyD88. LPS also augmented responses in the MyD88-deficient recipients, suggesting that LPS likely exerts its effects on both transferred DC and host B cells in vivo. These results indicate that both the alphabeta and gammadelta subsets are necessary for promoting autoantibody production by DC vaccination, and that although TLR/MyD88 signaling is not absolutely required for initiation, this pathway does promote augmentation, and Th1-mediated skewing, of anti-DNA autoantibodies.

    View details for Web of Science ID 000250388000026

    View details for PubMedID 17947655

Footer Links:

Stanford Medicine Resources: