All Publications

  • What can fruit flies teach us about karate? eLife Yang, H. H., Clandinin, T. R. 2014; 3


    Understanding the logic behind how a fruit fly's brain tells it to groom its body parts in a stereotyped order might help us understand other behaviours that also involve a series of actions.

    View details for DOI 10.7554/eLife.04040

    View details for PubMedID 25139958

  • Permanent Genetic Access to Transiently Active Neurons via TRAP: Targeted Recombination in Active Populations NEURON Guenthner, C. J., Miyamichi, K., Yang, H. H., Heller, H. C., Luo, L. 2013; 78 (5): 773-784


    Targeting genetically encoded tools for neural circuit dissection to relevant cellular populations is a major challenge in neurobiology. We developed an approach, targeted recombination in active populations (TRAP), to obtain genetic access to neurons that were activated by defined stimuli. This method utilizes mice in which the tamoxifen-dependent recombinase CreER(T2) is expressed in an activity-dependent manner from the loci of the immediate early genes Arc and Fos. Active cells that express CreER(T2) can only undergo recombination when tamoxifen is present, allowing genetic access to neurons that are active during a time window of less than 12 hr. We show that TRAP can provide selective access to neurons activated by specific somatosensory, visual, and auditory stimuli and by experience in a novel environment. When combined with tools for labeling, tracing, recording, and manipulating neurons, TRAP offers a powerful approach for understanding how the brain processes information and generates behavior.

    View details for DOI 10.1016/j.neuron.2013.03.025

    View details for Web of Science ID 000320743400005

Footer Links:

Stanford Medicine Resources: