Publications

Journal Articles


  • Audiologic impairment associated with bilirubin-induced neurologic damage. Seminars in fetal & neonatal medicine Olds, C., Oghalai, J. S. 2015; 20 (1): 42-46

    Abstract

    Hyperbilirubinemia occurs commonly in neonates and is usually mild and transient, with no long-lasting sequelae. However, bilirubin-induced neurologic damage may occur in some infants. The auditory pathway is the most sensitive part of the central nervous system to bilirubin-induced toxicity, and permanent sequelae may result from only moderately elevated total serum/plasma bilirubin levels. The damage to the auditory system occurs primarily within the brainstem and cranial nerve VIII, and manifests clinically as auditory neuropathy spectrum disorder.

    View details for DOI 10.1016/j.siny.2014.12.006

    View details for PubMedID 25575899

  • Auditory cortex activation to natural speech and simulated cochlear implant speech measured with functional near-infrared spectroscopy HEARING RESEARCH Pollonini, L., Olds, C., Abaya, H., Bortfeld, H., Beauchamp, M. S., Oghalai, J. S. 2014; 309: 84-93

    Abstract

    The primary goal of most cochlear implant procedures is to improve a patient's ability to discriminate speech. To accomplish this, cochlear implants are programmed so as to maximize speech understanding. However, programming a cochlear implant can be an iterative, labor-intensive process that takes place over months. In this study, we sought to determine whether functional near-infrared spectroscopy (fNIRS), a non-invasive neuroimaging method which is safe to use repeatedly and for extended periods of time, can provide an objective measure of whether a subject is hearing normal speech or distorted speech. We used a 140 channel fNIRS system to measure activation within the auditory cortex in 19 normal hearing subjects while they listed to speech with different levels of intelligibility. Custom software was developed to analyze the data and compute topographic maps from the measured changes in oxyhemoglobin and deoxyhemoglobin concentration. Normal speech reliably evoked the strongest responses within the auditory cortex. Distorted speech produced less region-specific cortical activation. Environmental sounds were used as a control, and they produced the least cortical activation. These data collected using fNIRS are consistent with the fMRI literature and thus demonstrate the feasibility of using this technique to objectively detect differences in cortical responses to speech of different intelligibility.

    View details for DOI 10.1016/j.heares.2013.11.007

    View details for Web of Science ID 000331858700010

Footer Links:

Stanford Medicine Resources: