Bio

Honors & Awards


  • Conference Travel Award, Department of Radiology, Duke University (04/2017)
  • Medical Student Research Grant, RSNA (08/1/16-08/1/17)

Boards, Advisory Committees, Professional Organizations


  • Member, American Society for Neuroradiology (ASNR) (2016 - Present)
  • Member, International Society for Magnetic Resonance in Medicine (ISMRM) (2016 - Present)
  • Member, Radiological Society of North America (RSNA) (2016 - Present)

Professional Education


  • Internship, Harbor-UCLA Medical Center (2019)
  • M.D., Duke University School of Medicine (2018)
  • M.S., Tufts University School of Medicine, Biomedical Sciences (2013)
  • B.S., University of California, Los Angeles, Neuroscience (2011)

Publications

All Publications


  • Lateral impacts correlate with falx cerebri displacement and corpus callosum trauma in sports-related concussions BIOMECHANICS AND MODELING IN MECHANOBIOLOGY Hernandez, F., Giordano, C., Goubran, M., Parivash, S., Grant, G., Zeineh, M., Camarillo, D. 2019; 18 (3): 631–49
  • Lateral impacts correlate with falx cerebri displacement and corpus callosum trauma in sports-related concussions. Biomechanics and modeling in mechanobiology Hernandez, F., Giordano, C., Goubran, M., Parivash, S., Grant, G., Zeineh, M., Camarillo, D. 2019

    Abstract

    Corpus callosum trauma has long been implicated in mild traumatic brain injury (mTBI), yet the mechanism by which forces penetrate this structure is unknown. We investigated the hypothesis that coronal and horizontal rotations produce motion of the falx cerebri that damages the corpus callosum. We analyzed previously published head kinematics of 115 sports impacts (2 diagnosed mTBI) measured with instrumented mouthguards and used finite element (FE) simulations to correlate falx displacement with corpus callosum deformation. Peak coronal accelerations were larger in impacts with mTBI (8592rad/s2avg.) than those without (1412rad/s2avg.). From FE simulations, coronal acceleration was strongly correlated with deep lateral motion of the falx center (r=0.85), while horizontal acceleration was correlated with deep lateral motion of the falx periphery (r>0.78). Larger lateral displacement at the falx center and periphery was correlated with higher tract-oriented strains in the corpus callosum body (r=0.91) and genu/splenium (r>0.72), respectively. The relationship between the corpus callosum and falx was unique: removing the falx from the FE model halved peak strains in the corpus callosum from 35% to 17%. Consistent with model results, we found indications of corpus callosum trauma in diffusion tensor imaging of the mTBI athletes. For a measured alteration of consciousness, depressed fractional anisotropy and increased mean diffusivity indicated possible damage to the mid-posterior corpus callosum. Our results suggest that the corpus callosum may be sensitive to coronal and horizontal rotations because they drive lateral motion of a relatively stiff membrane, the falx, in the direction of commissural fibers below.

    View details for PubMedID 30859404

  • Longitudinal changes in hippocampal subfield volume associated with collegiate football. Journal of neurotrauma Parivash, S. N., Goubran, M., Mills, B. D., Rezaii, P., Thaler, C., Wolman, D., Bian, W., Mitchell, L. A., Boldt, B., Douglas, D., Wilson, E., Choi, J., Xie, L., Yushkevich, P., Digiacomo, P., Wongsripuemtet, J., Parekh, M., Fiehler, J., Do, H., Lopez, J., Rosenerg, J., Camarillo, D. B., Grant, G., Wintermark, M., Zeineh, M. 2019

    Abstract

    Collegiate football athletes are subject to repeated head impacts that may cause brain injury. The hippocampus is composed of several distinct subfields with possible differential susceptibility to injury. The purpose of this study is to determine whether there are longitudinal changes in hippocampal subfield volume in collegiate football. A prospective cohort study was conducted over a 5-year period tracking 63 football and 34 volleyball male collegiate athletes. Athletes underwent high-resolution structural magnetic resonance imaging, and automated segmentation provided hippocampal subfield volumes. At baseline, football athletes demonstrated a smaller subiculum volume than volleyball athletes (-67.77 mm3, P=.012). A regression analysis performed within football athletes similarly demonstrated a smaller subiculum volume among those at increased concussion risk based on athlete position (P=.001). For the longitudinal analysis, a linear mixed-effects model assessed the interaction between sport and time, revealing a significant decrease in CA1 volume in football athletes without an in-study concussion compared to volleyball athletes (volume difference per year=-35.22 mm3, P=.005). This decrease in CA1 volume over time was significant when football athletes were examined in isolation from volleyball athletes (P=.011). Thus, this prospective longitudinal study showed a decrease in CA1 volume over time in football athletes, in addition to baseline differences that were identified in the downstream subiculum. Hippocampal changes may have important implications for high-contact sports.

    View details for PubMedID 31044639

  • CT Fluoroscopy-Guided Interlaminar Epidural Steroid Injections in the Cervical Spine: Rate of Nontarget Injection Into the Retrodural Space of Okada. AJR. American journal of roentgenology Parivash, S. N., Kranz, P. G., Gray, L., Amrhein, T. J. 2018; 211 (2): 426–31

    Abstract

    The purpose of this study was to assess the rate of inadvertent injection into the retrodural space of Okada during CT fluoroscopy-guided interlaminar epidural steroid injection in the cervical spine.Images from cases of cervical interlaminar epidural steroid injection under CT fluoroscopic guidance performed at a single institution between November 2009 and November 2015 were obtained and reviewed. For all cases, the following information was recorded: presence or absence of contrast material within the Okada space, cervical anatomic level at which the procedure was performed, laterality of approach, trainee presence, and years of proceduralist experience. Two-tailed chi-square tests were used to assess categoric variables, and t tests were performed to assess for continuous variables predictive of nontarget injection.A total of 974 CT fluoroscopy-guided cervical interlaminar epidural steroid injections were identified in 728 patients. The presence of contrast material in the retrodural space of Okada was identified in 2.9% of cases (28/974). All cases of inadvertent injection were identified and corrected intraprocedurally. The greatest rate of inadvertent injection (4.6% [18/389]) occurred at C5-6. No variables predictive of inadvertent injection into the Okada space were identified. There was a 0.4% (4/974) complication rate, and all complications were minor.We identified a 2.9% rate of unintended injection into the retrodural space of Okada during cervical interlaminar epidural steroid injection. If unrecognized, these nontarget injections can result in treatment failure in a subset of patients who undergo cervical interlaminar epidural steroid injection. Future study is warranted to assess the rate of inadvertent Okada injection under conventional fluoroscopy and to compare the rates of detection between the two imaging-guided modalities.

    View details for DOI 10.2214/AJR.18.19606

    View details for PubMedID 29812982

  • Incidence of Inadvertent Dural Puncture During CT Fluoroscopy-Guided Interlaminar Epidural Corticosteroid Injections in the Cervical Spine: An Analysis of 974 Cases. AJR. American journal of roentgenology Amrhein, T. J., Parivash, S. N., Gray, L., Kranz, P. G. 2017; 209 (3): 656–61

    Abstract

    The objective of this study is to determine the rate of inadvertent dural puncture during CT fluoroscopy-guided cervical interlaminar epidural corticosteroid injection. In addition, in a subanalysis, we aim to assess the rate of inadvertent dural puncture superior to C5-C6 occurring during interlaminar epidural corticosteroid injection using CT fluoroscopy guidance because such injections are not performed using conventional fluoroscopy.Images obtained from consecutive CT fluoroscopy-guided cervical interlaminar epidural corticosteroid injections conducted from November 2009 to November 2015 were reviewed. The following information was recorded: the presence of inadvertent dural puncture, the level of the cervical interlaminar space, approach laterality (left or right), anteroposterior spinal canal diameter, and the presence of a trainee. Two-tailed Fisher exact tests were used for assessment of categoric variables, and t tests were used for continuous variables.A total of 974 cervical interlaminar epidural corticosteroid injections were identified in 728 patients. Inadvertent dural punctures were identified in association with 1.4% (14/974) of these injections; all punctures were recognized during the procedure. Needle placements were performed at every cervical level (C1-C2 through C7-T1). The highest rate of dural puncture (2.8%) occurred at C5-C6. No dural punctures occurred superior to C5-C6 (16.6% of cases). The complication rate was 0.4%. Only greater anteroposterior spinal canal diameter was associated with increased dural puncture rates (p = 0.049).CT fluoroscopy-guided cervical interlaminar epidural corticosteroid injections were performed at all levels throughout the cervical spine. A very low complication rate and a minimal rate of inadvertent dural puncture were noted, similar to previously reported rates for conventional fluoroscopy-guided injections limited to the lower cervical spine only.

    View details for DOI 10.2214/AJR.16.17738

    View details for PubMedID 28657847

  • Plasticity of binocularity and visual acuity are differentially limited by nogo receptor. The Journal of neuroscience : the official journal of the Society for Neuroscience Stephany, C. É., Chan, L. L., Parivash, S. N., Dorton, H. M., Piechowicz, M., Qiu, S., McGee, A. W. 2014; 34 (35): 11631–40

    Abstract

    The closure of developmental critical periods consolidates neural circuitry but also limits recovery from early abnormal sensory experience. Degrading vision by one eye throughout a critical period both perturbs ocular dominance (OD) in primary visual cortex and impairs visual acuity permanently. Yet understanding how binocularity and visual acuity interrelate has proven elusive. Here we demonstrate the plasticity of binocularity and acuity are separable and differentially regulated by the neuronal nogo receptor 1 (NgR1). Mice lacking NgR1 display developmental OD plasticity as adults and their visual acuity spontaneously improves after prolonged monocular deprivation. Restricting deletion of NgR1 to either cortical interneurons or a subclass of parvalbumin (PV)-positive interneurons alters intralaminar synaptic connectivity in visual cortex and prevents closure of the critical period for OD plasticity. However, loss of NgR1 in PV neurons does not rescue deficits in acuity induced by chronic visual deprivation. Thus, NgR1 functions with PV interneurons to limit plasticity of binocularity, but its expression is required more extensively within brain circuitry to limit improvement of visual acuity following chronic deprivation.

    View details for DOI 10.1523/JNEUROSCI.0545-14.2014

    View details for PubMedID 25164659

    View details for PubMedCentralID PMC4145169

  • mTOR Inhibition ameliorates cognitive and affective deficits caused by Disc1 knockdown in adult-born dentate granule neurons. Neuron Zhou, M., Li, W., Huang, S., Song, J., Kim, J. Y., Tian, X., Kang, E., Sano, Y., Liu, C., Balaji, J., Wu, S., Zhou, Y., Zhou, Y., Parivash, S. N., Ehninger, D., He, L., Song, H., Ming, G. L., Silva, A. J. 2013; 77 (4): 647–54

    Abstract

    Abnormalities during brain development are thought to cause psychiatric illness and other neurodevelopmental disorders. However, developmental processes such as neurogenesis continue in restricted brain regions of adults, and disruptions of these processes could contribute to the phenotypes of neurodevelopmental disorders. As previously reported, we show that Disc1 knockdown specifically in adult-born dentate gyrus (DG) neurons results in increased mTOR signaling, hyperexcitability, and neuronal structure deficits. Disc1 knockdown also resulted in pronounced cognitive and affective deficits, which could be reversed when the affected DG neurons were inactivated. Importantly, reversing increases in mTOR signaling with an FDA-approved inhibitor both prevented and treated these behavioral deficits, even when associated structural deficits were not reversed. Our findings suggest that a component of the affective and cognitive phenotypes in neurodevelopmental disorders may be caused by disruptions in adult-born neurons. Consequently, treatments directed at this cell population may have a significant impact on these phenotypes.

    View details for DOI 10.1016/j.neuron.2012.12.033

    View details for PubMedID 23439118

    View details for PubMedCentralID PMC3586374

  • THE EFFICACY OF MESENCHYMAL STEM CELLS IN THORACO-LUMBAR SPINE FUSION SURGERY FOR TRAUMA: A RETROSPECTIVE REVIEW OF OPERATED CASES Torres, R., Lieberson, R., Parivash, S. MARY ANN LIEBERT INC. 2011: A25
  • The hippocampus plays a selective role in the retrieval of detailed contextual memories. Current biology : CB Wiltgen, B. J., Zhou, M., Cai, Y., Balaji, J., Karlsson, M. G., Parivash, S. N., Li, W., Silva, A. J. 2010; 20 (15): 1336–44

    Abstract

    It is widely believed that the hippocampus plays a temporary role in the retrieval of episodic and contextual memories. Initial research indicated that damage to this structure produced amnesia for newly acquired memories but did not affect those formed in the distant past. A number of recent studies, however, have found that the hippocampus is required for the retrieval of episodic and contextual memories regardless of their age. These findings are currently the subject of intense debate, and a satisfying resolution has yet to be identified.The current experiments address this issue by demonstrating that detailed memories require the hippocampus, whereas memories that lose precision become independent of this structure. First, we show that the dorsal hippocampus is preferentially activated by the retrieval of detailed contextual fear memories. We then establish that the hippocampus is necessary for the retrieval of detailed memories by using a context-generalization procedure. Mice that exhibit high levels of generalization to a novel environment show no memory loss when the hippocampus is subsequently inactivated. In contrast, mice that discriminate between contexts are significantly impaired by hippocampus inactivation.Our data suggest that detailed contextual memories require the hippocampus, whereas memories that lose precision can be retrieved without this structure. These findings can account for discrepancies in the literature-memories of our distant past can be either lost or retained after hippocampus damage depending on their quality-and provide a new framework for understanding memory consolidation.

    View details for DOI 10.1016/j.cub.2010.06.068

    View details for PubMedID 20637623

    View details for PubMedCentralID PMC2928141