Bio

Professional Education


  • Doctor of Philosophy, University Of Melbourne (2011)
  • B.Sc.(Hons.), University of Melbourne, Anatomy and Cell Biology (2006)
  • B.Biomed.Sc., University of Melbourne, Neuroscience (2006)

Stanford Advisors


Publications

Journal Articles


  • Mechanisms That Determine the Internal Environment of the Developing Brain: A Transcriptomic, Functional and Ultrastructural Approach PLOS ONE Liddelow, S. A., Dziegielewska, K. M., Ek, C. J., Habgood, M. D., Bauer, H., Bauer, H., Lindsay, H., Wakefield, M. J., Strazielle, N., Kratzer, I., Mollgard, K., Ghersi-Egea, J., Saunders, N. R. 2013; 8 (7)

    Abstract

    We provide comprehensive identification of embryonic (E15) and adult rat lateral ventricular choroid plexus transcriptome, with focus on junction-associated proteins, ionic influx transporters and channels. Additionally, these data are related to new structural and previously published permeability studies. Results reveal that most genes associated with intercellular junctions are expressed at similar levels at both ages. In total, 32 molecules known to be associated with brain barrier interfaces were identified. Nine claudins showed unaltered expression, while two claudins (6 and 8) were expressed at higher levels in the embryo. Expression levels for most cytoplasmic/regulatory adaptors (10 of 12) were similar at the two ages. A few junctional genes displayed lower expression in embryos, including 5 claudins, occludin and one junctional adhesion molecule. Three gap junction genes were enriched in the embryo. The functional effectiveness of these junctions was assessed using blood-delivered water-soluble tracers at both the light and electron microscopic level: embryo and adult junctions halted movement of both 286Da and 3kDa molecules into the cerebrospinal fluid (CSF). The molecular identities of many ion channel and transporter genes previously reported as important for CSF formation and secretion in the adult were demonstrated in the embryonic choroid plexus (and validated with immunohistochemistry of protein products), but with some major age-related differences in expression. In addition, a large number of previously unidentified ion channel and transporter genes were identified for the first time in plexus epithelium. These results, in addition to data obtained from electron microscopical and physiological permeability experiments in immature brains, indicate that exchange between blood and CSF is mainly transcellular, as well-formed tight junctions restrict movement of small water-soluble molecules from early in development. These data strongly indicate the brain develops within a well-protected internal environment and the exchange between the blood, brain and CSF is transcellular and not through incomplete barriers.

    View details for DOI 10.1371/journal.pone.0065629

    View details for Web of Science ID 000321341000007

    View details for PubMedID 23843944

  • Transporters of the blood-brain and blood-CSF interfaces in development and in the adult. Molecular aspects of medicine Saunders, N. R., Daneman, R., Dziegielewska, K. M., Liddelow, S. A. 2013; 34 (2-3): 742-752

    Abstract

    The protective barriers of the brain provide a complex series of physical and chemical obstacles to movement of macromolecules from the periphery into the central nervous system. Studies on these barriers have been focused on two main research areas: (i) anatomical and physiological descriptions of their properties, including during development where functioning barriers are likely to be important for normal neuronal growth; and (ii), investigations of these barriers during disease and attempts at overcoming their defenses in order to deliver drugs to the central nervous system. Both fields are now advanced by the application of molecular gene expression studies of cerebral endothelia (blood vasculature, site of the blood-brain barrier) and choroid plexus epithelia (site of the blood-cerebrospinal fluid barrier) from developing and adult brains, particularly with respect to solute-linked carriers and other transporters. These new techniques provide a wealth of information on the changing nature of transporters at barrier interfaces during normal development and following disease. This review outlines published findings from transcriptome and qPCR studies of expression of genes coding for transporters in these barriers, with a focus on developing brain. The findings clearly support earlier published physiological data describing specific transport mechanisms across barrier interfaces both in the adult and in particular in the developing brain.

    View details for DOI 10.1016/j.mam.2012.11.006

    View details for PubMedID 23506907

  • Immune responses at brain barriers and implications for brain development and neurological function in later life. Frontiers in integrative neuroscience Stolp, H. B., Liddelow, S. A., Sá-Pereira, I., Dziegielewska, K. M., Saunders, N. R. 2013; 7: 61-?

    Abstract

    For a long time the brain has been considered an immune-privileged site due to a muted inflammatory response and the presence of protective brain barriers. It is now recognized that neuroinflammation may play an important role in almost all neurological disorders and that the brain barriers may be contributing through either normal immune signaling or disruption of their basic physiological mechanisms. The distinction between normal function and dysfunction at the barriers is difficult to dissect, partly due to a lack of understanding of normal barrier function and partly because of physiological changes that occur as part of normal development and ageing. Brain barriers consist of a number of interacting structural and physiological elements including tight junctions between adjacent barrier cells and an array of influx and efflux transporters. Despite these protective mechanisms, the capacity for immune-surveillance of the brain is maintained, and there is evidence of inflammatory signaling at the brain barriers that may be an important part of the body's response to damage or infection. This signaling system appears to change both with normal ageing, and during disease. Changes may affect diapedesis of immune cells and active molecular transfer, or cause rearrangement of the tight junctions and an increase in passive permeability across barrier interfaces. Here we review the many elements that contribute to brain barrier functions and how they respond to inflammation, particularly during development and aging. The implications of inflammation-induced barrier dysfunction for brain development and subsequent neurological function are also discussed.

    View details for DOI 10.3389/fnint.2013.00061

    View details for PubMedID 23986663

  • Barrier mechanisms in the developing brain. Frontiers in pharmacology Saunders, N. R., Liddelow, S. A., Dziegielewska, K. M. 2012; 3: 46-?

    Abstract

    The adult brain functions within a well-controlled stable environment, the properties of which are determined by cellular exchange mechanisms superimposed on the diffusion restraint provided by tight junctions at interfaces between blood, brain and cerebrospinal fluid (CSF). These interfaces are referred to as "the" blood-brain barrier. It is widely believed that in embryos and newborns, this barrier is immature or "leaky," rendering the developing brain more vulnerable to drugs or toxins entering the fetal circulation from the mother. New evidence shows that many adult mechanisms, including functionally effective tight junctions are present in embryonic brain and some transporters are more active during development than in the adult. Additionally, some mechanisms present in embryos are not present in adults, e.g., specific transport of plasma proteins across the blood-CSF barrier and embryo-specific intercellular junctions between neuroependymal cells lining the ventricles. However developing cerebral vessels appear to be more fragile than in the adult. Together these properties may render developing brains more vulnerable to drugs, toxins, and pathological conditions, contributing to cerebral damage and later neurological disorders. In addition, after birth loss of protection by efflux transporters in placenta may also render the neonatal brain more vulnerable than in the fetus.

    View details for DOI 10.3389/fphar.2012.00046

    View details for PubMedID 22479246

  • SPARC/osteonectin, an endogenous mechanism for targeting albumin to the blood-cerebrospinal fluid interface during brain development EUROPEAN JOURNAL OF NEUROSCIENCE Liddelow, S. A., Dziegielewska, K. M., Mollgard, K., Phoenix, T. N., Temple, S., VandeBerg, J. L., Saunders, N. R. 2011; 34 (7): 1062-1073

    Abstract

    Specialized populations of choroid plexus epithelial cells have previously been shown to be responsible for the transfer of individual plasma proteins from blood to the cerebrospinal fluid (CSF), contributing to their characteristically high concentrations in CSF of the developing brain. The mechanism of this protein transfer remains elusive. Using a marsupial, Monodelphis domestica, we demonstrate that the albumin-binding protein SPARC (osteonectin/BM-40/culture-shock protein) is present in a subset of choroid plexus epithelial cells from its first appearance, throughout development, and into adulthood. The synthesis of SPARC by the lateral ventricular plexus was confirmed with real-time PCR. The expression level of SPARC was higher in plexuses of younger than older animals. Western blot analysis of the gene product confirmed the quantitative PCR results. The co-localization of SPARC and albumin shown by immunocytochemistry and its cellular location indicate that this glycoprotein may act as a recognition site for albumin. In addition, the numbers of SPARC-immunopositive cells and its expression were responsive to experimental changes of albumin concentration in the blood. It is suggested that SPARC may be one of the molecules that govern the uptake and delivery of proteins from blood to the CSF. The results also confirm that protein transfer across the blood-CSF barrier is developmentally and physiologically regulated.

    View details for DOI 10.1111/j.1460-9568.2011.07821.x

    View details for Web of Science ID 000296202200004

    View details for PubMedID 21899600

  • Modification of protein transfer across blood/cerebrospinal fluid barrier in response to altered plasma protein composition during development EUROPEAN JOURNAL OF NEUROSCIENCE Liddelow, S. A., Dziegielewska, K. M., VandeBerg, J. L., Noor, N. M., Potter, A. M., Saunders, N. R. 2011; 33 (3): 391-400

    Abstract

    A developmentally regulated protein-specific transfer mechanism across choroid plexus epithelial cells has previously been proposed to contribute to the characteristically high concentration of protein in cerebrospinal fluid (CSF) in the immature brain. Here we demonstrate that this mechanism is sensitive to protein variations in plasma resulting in changed numbers of transferring cells for individual proteins and altered transfer into the CSF. Pups of Monodelphis domestica at postnatal day (P)9, P65 and P110 were injected intraperitoneally with either adult Monodelphis plasma or exogenous bovine fetuin. Samples of CSF, blood and brain were collected from terminally anaesthetized animals 3-48 h later. The concentration of total protein was measured and levels of albumin, hemopexin, ?-fetoprotein and bovine fetuin were estimated by western blotting. Numbers of lateral ventricular choroid plexus cells positive for total and individual plasma proteins were counted in paraffin sections of brains stained with appropriate antibodies. Following intraperitoneal injections, the content of proteins in the CSF increased at all three ages, but the concentration increased only in the CSF of older animals. The total numbers of plexus cells positive for plasma protein did not change significantly, but cells positive for individual proteins did. Fetuin was detected in all protein-positive cells, but apparently displaced ?-fetoprotein and, to a lesser degree, hemopexin. The results indicate that protein transfer across the blood/CSF barrier appears to be regulated by a molecular recognition mechanism that is probably saturable but may not be as specific for individual proteins as previously suggested.

    View details for DOI 10.1111/j.1460-9568.2010.07509.x

    View details for Web of Science ID 000286769800002

    View details for PubMedID 21138490

  • Fluids and barriers of the CNS: a historical viewpoint. Fluids and barriers of the CNS Liddelow, S. A. 2011; 8 (1): 2-?

    Abstract

    Tracing the exact origins of modern science can be a difficult but rewarding pursuit. It is possible for the astute reader to follow the background of any subject through the many important surviving texts from the classical and ancient world. While empirical investigations have been described by many since the time of Aristotle and scientific methods have been employed since the Middle Ages, the beginnings of modern science are generally accepted to have originated during the 'scientific revolution' of the 16th and 17th centuries in Europe. The scientific method is so fundamental to modern science that some philosophers consider earlier investigations as 'pre-science'. Notwithstanding this, the insight that can be gained from the study of the beginnings of a subject can prove important in the understanding of work more recently completed. As this journal undergoes an expansion in focus and nomenclature from cerebrospinal fluid (CSF) into all barriers of the central nervous system (CNS), this review traces the history of both the blood-CSF and blood-brain barriers from as early as it was possible to find references, to the time when modern concepts were established at the beginning of the 20th century.

    View details for DOI 10.1186/2045-8118-8-2

    View details for PubMedID 21349150

  • Assessing blood-cerebrospinal fluid barrier permeability in the rat embryo. Methods in molecular biology (Clifton, N.J.) Saunders, N. R., Ek, C. J., Habgood, M. D., Johansson, P., Liddelow, S., Dziegielewska, K. M. 2011; 686: 247-265

    Abstract

    The rat is a useful model for studies of embryonic blood-CSF function in that the embryos are large enough to collect sufficient fluid samples for analysis and exteriorized embryos can be kept viable for several hours in order to conduct longer term experiments. Both quantitative and qualitative methods that are similar to those used in adult studies can be used to assess blood-CSF function in the rat embryo; however, there are technical aspects of these studies that are more challenging. The choice of the methods to be used depends largely on the question being asked. This chapter describes in detail the precise steps that need to be taken to keep rat embryos in a good physiological state while conducting the experiments, how to administer markers into the embryonic circulation, and how to sample blood and/or CSF from embryos. How to evaluate the results obtained is outlined at the end of each method, together with notes on some limitations that are inherent in developmental studies.

    View details for DOI 10.1007/978-1-60761-938-3_11

    View details for PubMedID 21082375

  • Efflux mechanisms at the developing brain barriers: ABC-transporters in the fetal and postnatal rat TOXICOLOGY LETTERS Ek, C. J., Wong, A., Liddelow, S. A., Johansson, P. A., Dziegielewska, K. M., Saunders, N. R. 2010; 197 (1): 51-59

    Abstract

    Proteins of the ATP-binding cassette (ABC) family, present at the blood-brain barrier interfaces, have been shown to reduce the entry of compounds from blood into the brain by active efflux. Their substrates are diverse including many drugs and toxins and therefore provide an important mechanism for brain neuroprotection. However, knowledge of their presence and function in the developing brain is very limited. We have used qPCR and immunocytochemistry to determine gene expression and localisation of four main barrier ABC-transporters (pgp/ABCB1, MRP1/ABCC1, MRP4/ABCC4 and BCRP/ABCG2) in the fetal and neonatal rat brain cerebral blood vessels (site of blood-brain barrier) and choroid plexus (site of blood-CSF barrier). The study shows that ABC-transporters localise to the brain barriers even at early fetal stages and although pgp expression was lower in the fetus, the other transporters were expressed at comparable levels in fetal and adult brains suggesting direct neuroprotection of the brain in addition to that provided by the placenta. BCRP was expressed at higher levels in developing choroid plexus and was only detected at fetal stages on the blood-facing side of epithelial cells indicating a particular role of this transporter for early brain efflux mechanisms.

    View details for DOI 10.1016/j.toxlet.2010.04.025

    View details for Web of Science ID 000279989500008

    View details for PubMedID 20466047

  • Development of the lateral ventricular choroid plexus in a marsupial, Monodelphis domestica. Cerebrospinal fluid research Liddelow, S. A., Dziegielewska, K. M., VandeBerg, J. L., Saunders, N. R. 2010; 7: 16-?

    Abstract

    Choroid plexus epithelial cells are the site of blood/cerebrospinal fluid (CSF) barrier and regulate molecular transfer between the two compartments. Their mitotic activity in the adult is low. During development, the pattern of growth and timing of acquisition of functional properties of plexus epithelium are not known.Numbers and size of choroid plexus epithelial cells and their nuclei were counted and measured in the lateral ventricular plexus from the first day of its appearance until adulthood. Newborn Monodelphis pups were injected with 5-bromo-2-deoxyuridine (BrdU) at postnatal day 3 (P3), P4 and P5. Additional animals were injected at P63, P64 and P65. BrdU-immunopositive nuclei were counted and their position mapped in the plexus structure at different ages after injections. Double-labelling immunocytochemistry with antibodies to plasma protein identified post-mitotic cells involved in protein transfer.Numbers of choroid plexus epithelial cells increased 10-fold between the time of birth and adulthood. In newborn pups each consecutive injection of BrdU labelled 20-40 of epithelial cells counted. After 3 injections, numbers of BrdU positive cells remained constant for at least 2 months. BrdU injections at an older age (P63, P64, P65) resulted in a smaller number of labelled plexus cells. Numbers of plexus cells immunopositive for both BrdU and plasma protein increased with age indicating that protein transferring properties are acquired post mitotically. Labelled nuclei were only detected on the dorsal arm of the plexus as it grows from the neuroependyma, moving along the structure in a 'conveyor belt' like fashion.The present study established that lateral ventricular choroid plexus epithelial cells are born on the dorsal side of the structure only. Cells born in the first few days after choroid plexus differentiation from the neuroependyma remain present even two months later. Protein-transferring properties are acquired post-mitotically and relatively early in plexus development.

    View details for DOI 10.1186/1743-8454-7-16

    View details for PubMedID 20920364

  • NEUROBID - an EU-funded project to study the developing brain barriers Dev Neurosci Bueter W, Saunders NR, Mallard C, Bauer HC, Stolp HB, Kacelaars A, Dammann O, NEUROBID consortium (Dammann O, Stangel M, Bueter W, Brinkhaus MJ, McGuinness N, Gressens P, Ghersi-Egea JF, Heijen C, Kavelaars A, Molnár Z, Stolp H, Anthony D, Johnson T, Neuhoff S, Saunders N, Dziegielewska K, Ek J, Liddelow S, Mallard C, Säcman K, Förster C, Speer C, Kleinschnitz C, Neuhaus W, Burek M, Strazielle N, Bauer HC, Bauer H) 2010; 28 (5): 411-412
  • Cellular transfer of macromolecules across the developing choroid plexus of Monodelphis domestica EUROPEAN JOURNAL OF NEUROSCIENCE Liddelow, S. A., Dziegielewska, K. M., Ek, C. J., Johansson, P. A., Potter, A. M., Saunders, N. R. 2009; 29 (2): 253-266

    Abstract

    Choroid plexus epithelial cells secrete cerebrospinal fluid (CSF) and transfer molecules from blood into CSF. Tight junctions between choroidal epithelial cells are functionally effective from early in development: the route of transfer is suggested to be transcellular. Routes of transfer for endogenous and exogenous plasma proteins and dextrans were studied in Monodelphis domestica (opossum). Pups at postnatal (P) days 1-65 and young adults were injected with biotinylated dextrans (3-70 kDa) and/or foetal protein fetuin. CSF, plasma and brain samples were collected from terminally anaesthetized animals. Choroid plexus cells containing plasma proteins were detected immunocytochemically. Numbers of plasma protein-positive epithelial cells increased to adult levels by P28, but their percentage of plexus cells declined. Numbers of cells positive for biotinylated probes increased with age, while their percentage remained constant. Colocalization studies showed specificity for individual proteins in some epithelial cells. Biotinylated probes and endogenous proteins colocalized in about 10% of cells in younger animals, increasing towards 100% by adulthood. Injections of markers into the ventricles demonstrated that protein is transferred only from blood into CSF, whereas dextrans pass in both directions. These results indicate that protein and lipid-insoluble markers are transferred by separate mechanisms present in choroid plexuses from the earliest stage of brain development, and transfer of proteins from plasma across choroid plexus epithelial cells contributes to the high protein concentration in CSF in the immature brain.

    View details for DOI 10.1111/j.1460-9568.2008.06571.x

    View details for Web of Science ID 000262515600005

    View details for PubMedID 19200232

  • The blood-CSF barrier explained: When development is not immaturity BIOESSAYS Johansson, P. A., Dziegielewska, K. M., Liddelow, S. A., Saunders, N. R. 2008; 30 (3): 237-248

    Abstract

    It is often suggested that during development the brain barriers are immature. This argument stems from teleological interpretations and experimental observations of the high protein concentrations in fetal cerebrospinal fluid (CSF) and decreases in apparent permeability of passive markers during development. We argue that the developmental blood-CSF barrier restricts the passage of lipid-insoluble molecules by the same mechanism as in the adult (tight junctions) rendering the paracellular pathway an unlikely route of entry. Instead, we suggest that both protein and passive markers are transferred across the epithelium through a transcellular route. We propose that changes in volume of distribution can largely explain the decrease in apparent permeability for passive markers and that developmentally regulated cellular transfer explains changes in CSF protein concentrations. The blood-CSF tight junctions are functionally mature from very early in development, and it appears that transfer from blood into embryonic brain occurs predominately via CSF rather than the vasculature.

    View details for DOI 10.1002/bies.20718

    View details for Web of Science ID 000253960600006

    View details for PubMedID 18293362

  • Blood-CSF barrier function in the rat embryo EUROPEAN JOURNAL OF NEUROSCIENCE Johansson, P. A., Dziegielewska, K. M., Ek, C. J., Habgood, M. D., Liddelow, S. A., Potter, A. M., Stolp, H. B., Saunders, N. R. 2006; 24 (1): 65-76

    Abstract

    Blood-cerebrospinal fluid (CSF) barrier function and expansion of the ventricular system were investigated in embryonic rats (E12-18). Permeability markers (sucrose and inulin) were injected intraperitoneally and concentrations measured in plasma and CSF at two sites (lateral and 4th ventricles) after 1 h. Total protein concentrations were also measured. CSF/plasma concentration ratios for endogenous protein were stable at approximately 20% at E14-18 and subsequently declined. In contrast, ratios for sucrose (100%) and inulin (40%) were highest at the earliest ages studied (E13-14) and then decreased substantially. Between E13 and E16 the volume of the lateral ventricles increased over three-fold. Decreasing CSF/plasma concentration ratios for small, passively diffusing molecules during embryonic development may not reflect changes in permeability. Instead, increasing volume of distribution appears to be important in this decline. The intracellular presence of a small marker (3000 Da biotin-dextranamine) in plexus epithelial cells following intraperitoneal injection indicates a transcellular route of transfer. Ultrastructural evidence confirmed that choroid plexus tight junctions are impermeable to small molecules at least as early as E15, indicating the blood-CSF barrier is morphologically and functionally mature early in embryonic development. Comparison of two albumins (human and bovine) showed that transfer of human albumin (surrogate for endogenous protein) was 4-5 times greater than bovine, indicating selective blood-to-CSF transfer. The number of plexus epithelial cells immunopositive for endogenous plasma protein increased in parallel with increases in total protein content of the expanding ventricular system. Results suggest that different transcellular mechanisms for protein and small molecule transfer are operating across the embryonic blood-CSF interface.

    View details for DOI 10.1111/j.1460-9568.2006.04904.x

    View details for Web of Science ID 000239004100009

    View details for PubMedID 16800861

Stanford Medicine Resources: