Bio

Professional Education


  • Doctor of Philosophy, Kyoto University (2010)

Stanford Advisors


Publications

Journal Articles


  • Post-transcriptional mechanisms contribute to Etv2 repression during vascular development DEVELOPMENTAL BIOLOGY Moore, J. C., Sheppard-Tindell, S., Shestopalov, I. A., Yamazoe, S., Chen, J. K., Lawson, N. D. 2013; 384 (1): 128-140

    Abstract

    etv2 is an endothelial-specific ETS transcription factor that is essential for vascular differentiation and morphogenesis in vertebrates. While recent data suggest that Etv2 is dynamically regulated during vascular development, little is known about the mechanisms involved in this process. Here, we find that etv2 transcript and protein expression are highly dynamic during zebrafish vascular development, with both apparent during early somitogenesis and subsequently down-regulated as development proceeds. Inducible knockdown of Etv2 in zebrafish embryos prior to mid-somitogenesis stages, but not later, caused severe vascular defects, suggesting a specific role in early commitment of lateral mesoderm to the endothelial linage. Accordingly, Etv2-overexpressing cells showed an enhanced ability to commit to endothelial lineages in mosaic embryos. We further find that the etv2 3' untranslated region (UTR) is capable of repressing an endothelial autonomous transgene and contains binding sites for members of the let-7 family of microRNAs. Ectopic expression of let-7a could repress the etv2 3'UTR in sensor assays and was also able to block endogenous Etv2 protein expression, leading to concomitant reduction of endothelial genes. Finally, we observed that Etv2 protein levels persisted in maternal-zygotic dicer1 mutant embryos, suggesting that microRNAs contribute to its repression during vascular development. Taken together, our results suggest that etv2 acts during early development to specify endothelial lineages and is then down-regulated, in part through post-transcriptional repression by microRNAs, to allow normal vascular development.

    View details for DOI 10.1016/j.ydbio.2013.08.028

    View details for Web of Science ID 000326901100011

    View details for PubMedID 24036310

  • The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome NATURE Kuo, A. J., Song, J., Cheung, P., Ishibe-Murakami, S., Yamazoe, S., Chen, J. K., Patel, D. J., Gozani, O. 2012; 484 (7392): 115-?

    Abstract

    The recognition of distinctly modified histones by specialized 'effector' proteins constitutes a key mechanism for transducing molecular events at chromatin to biological outcomes. Effector proteins influence DNA-templated processes, including transcription, DNA recombination and DNA repair; however, no effector functions have yet been identified within the mammalian machinery that regulate DNA replication. Here we show that ORC1--a component of ORC (origin of replication complex), which mediates pre-DNA replication licensing--contains a bromo adjacent homology (BAH) domain that specifically recognizes histone H4 dimethylated at lysine 20 (H4K20me2). Recognition of H4K20me2 is a property common to BAH domains present within diverse metazoan ORC1 proteins. Structural studies reveal that the specificity of the BAH domain for H4K20me2 is mediated by a dynamic aromatic dimethyl-lysine-binding cage and multiple intermolecular contacts involving the bound peptide. H4K20me2 is enriched at replication origins, and abrogating ORC1 recognition of H4K20me2 in cells impairs ORC1 occupancy at replication origins, ORC chromatin loading and cell-cycle progression. Mutation of the ORC1 BAH domain has been implicated in the aetiology of Meier-Gorlin syndrome (MGS), a form of primordial dwarfism, and ORC1 depletion in zebrafish results in an MGS-like phenotype. We find that wild-type human ORC1, but not ORC1-H4K20me2-binding mutants, rescues the growth retardation of orc1 morphants. Moreover, zebrafish depleted of H4K20me2 have diminished body size, mirroring the phenotype of orc1 morphants. Together, our results identify the BAH domain as a novel methyl-lysine-binding module, thereby establishing the first direct link between histone methylation and the metazoan DNA replication machinery, and defining a pivotal aetiological role for the canonical H4K20me2 mark, via ORC1, in primordial dwarfism.

    View details for DOI 10.1038/nature10956

    View details for Web of Science ID 000302343400045

    View details for PubMedID 22398447

  • Cyclic Caged Morpholinos: Conformationally Gated Probes of Embryonic Gene Function ANGEWANDTE CHEMIE-INTERNATIONAL EDITION Yamazoe, S., Shestopalov, I. A., Provost, E., Leach, S. D., Chen, J. K. 2012; 51 (28): 6908-6911

    Abstract

    Feeling a bit cagey: morpholino-based antisense reagents have been caged through oligonucleotide cyclization, enabling photocontrol of gene expression in zebrafish embryos and larvae. Using these reagents, the timing of exocrine cell fate commitment in the developing pancreas has been examined.

    View details for DOI 10.1002/anie.201201690

    View details for Web of Science ID 000305990800017

    View details for PubMedID 22689470

Stanford Medicine Resources: