Bio

Professional Education


  • PhD, University of Otago, Neuroscience (2013)
  • MSc (Distinction), University of Otago, Psychology (2005)
  • BSc, University of Otago, Psychology/Chemistry (2002)

Stanford Advisors


Publications

Journal Articles


  • The firing rate of hippocampal CA1 place cells is modulated with a circadian period HIPPOCAMPUS Munn, R. G., Bilkey, D. K. 2012; 22 (6): 1325-1337

    Abstract

    The accurate recall of an event is usually dependent on a memory trace that encodes three pieces of information; what happened, when the event happened, and where. The established phenomenology of hippocampal CA1 pyramidal neurons could reflect mechanisms via which some of this information (where and what) is encoded; but so far there has been little evidence for a mechanism by which these cells might represent "when." It was therefore of interest to examine the activity of CA1 neurons over a substantial temporal duration. Forty-eight CA1 neurons were recorded once an hour during long (24-48 h) exposures to a single, stable environment where minimal time-of-day cues were available. Only data from the first 25 h of recording was analyzed quantitatively. We found that the mean ensemble firing rate of these cells changed predictably such that it was closely correlated (r = 0.707) to a reference sine wave with a 25-h period and a positive peak at recording start. This relationship was not explained by changes in the animal's running speed or amount of the recording environment covered in each recording session. When data were referenced to the onset or offset of the normal light-on period, the correlation with the sinusoid was abolished. At an individual cell level, the majority of neurons (n = 31) had significant correlations (P < 0.05) with the reference sine. We conclude that the firing rate of a large proportion of cells in area CA1 of the hippocampus are modulated over a circadian period but that this modulation is not entrained to light. Rather, entry into the environment and the associated food availability appear to be the entraining factors. We hypothesize that these neurons may be part of the putative food-entrainable oscillator. Such a system could enable an animal to discriminate between spatial representations on a temporal dimension with reference to the time of food availability.

    View details for DOI 10.1002/hipo.20969

    View details for Web of Science ID 000304349300010

    View details for PubMedID 21830249

  • Effects of fluoxetine on hippocampal rhythmic slow activity and behavioural inhibition BEHAVIOURAL PHARMACOLOGY Munn, R. G., McNaughton, N. 2008; 19 (3): 257-264

    Abstract

    Anxiolytics that act as GABAA agonists and those that act as 5-HT1A receptor agonists all reduce the frequency of hippocampal rhythmic slow activity (RSA). Changes in RSA have been linked to changes in behavioural inhibition and therefore anxiety - but this has not been tested with specific serotonin reuptake inhibitors, which are antidepressant and anxiolytic; therefore we tested the effects of fluoxetine on RSA and behavioural inhibition. Fluoxetine (FLU; 10 and 20 mg/kg, intraperitoneally) produced a dose-related reduction in the frequency of reticular-elicited RSA. Groups of rats received, intraperitoneally, either (i) saline, or 5 mg/kg fluoxetine, or 10 mg/kg fluoxetine; or (ii) saline, or 20 mg/kg fluoxetine, or 6.6 mg/kg of the 5-HT1A agonist buspirone (BUS) and were tested on a fixed interval 60-s schedule and a differential reinforcement of low rates 15-s schedule. FLU at 5 mg/kg produced effects similar to low doses of BUS and other anxiolytics. FLU (10 and 20 mg/kg) produced effects more like those reported earlier for higher doses of BUS. These results continue to link anxiolysis, RSA and behavioural inhibition, and suggest that serotonergic anxiolytics share some of the central actions of GABAergic anxiolytics, but at higher doses, administered acutely, have distinct side effects that can obscure their anxiolytic action in behavioural tasks.

    View details for Web of Science ID 000256207300010

    View details for PubMedID 18469543

Stanford Medicine Resources: