Bio

Publications

All Publications


  • The Golgi Outpost Protein TPPP Nucleates Microtubules and Is Critical for Myelination. Cell Fu, M. M., McAlear, T. S., Nguyen, H., Oses-Prieto, J. A., Valenzuela, A., Shi, R. D., Perrino, J. J., Huang, T. T., Burlingame, A. L., Bechstedt, S., Barres, B. A. 2019

    Abstract

    Oligodendrocytes extend elaborate microtubule arbors that contact up to 50 axon segments per cell, then spiral around myelin sheaths, penetrating from outer to inner layers. However, how they establish this complex cytoarchitecture is unclear. Here, we show that oligodendrocytes contain Golgi outposts, an organelle that can function as an acentrosomal microtubule-organizing center (MTOC). We identify a specific marker for Golgi outposts-TPPP (tubulin polymerization promoting protein)-that we use to purify this organelle and characterize its proteome. In in vitro cell-free assays, recombinant TPPP nucleates microtubules. Primary oligodendrocytes from Tppp knockout (KO) mice have aberrant microtubule branching, mixed microtubule polarity, and shorter myelin sheaths when cultured on 3-dimensional (3D) microfibers. Tppp KO mice exhibit hypomyelination with shorter, thinner myelin sheaths and motor coordination deficits. Together, our data demonstrate that microtubule nucleation outside the cell body at Golgi outposts by TPPP is critical for elongation of the myelin sheath.

    View details for DOI 10.1016/j.cell.2019.08.025

    View details for PubMedID 31522887

  • SAP102 regulates synaptic AMPAR function through a CNIH-2-dependent mechanism JOURNAL OF NEUROPHYSIOLOGY Liu, M., Shi, R., Hwang, H., Han, K., Wong, M., Ren, X., Lewis, L. D., Brown, E. N., Xu, W. 2018; 120 (4): 1578–86

    Abstract

    The postsynaptic density (PSD)-95-like, disk-large (DLG) membrane-associated guanylate kinase (PSD/DLG-MAGUK) family of proteins scaffold α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) complexes to the postsynaptic compartment and are postulated to orchestrate activity-dependent modulation of synaptic AMPAR functions. SAP102 is a key member of this family, present from early development, before PSD-95 and PSD-93, and throughout life. Here we investigate the role of SAP102 in synaptic transmission using a cell-restricted molecular replacement strategy, where SAP102 is expressed against the background of acute knockdown of endogenous PSD-95. We show that SAP102 rescues the decrease of AMPAR-mediated evoked excitatory postsynaptic currents (AMPAR eEPSCs) and AMPAR miniature EPSC (AMPAR mEPSC) frequency caused by acute knockdown of PSD-95. Further analysis of the mini events revealed that PSD-95-to-SAP102 replacement but not direct manipulation of PSD-95 increases the AMPAR mEPSC decay time. SAP102-mediated rescue of AMPAR eEPSCs requires AMPAR auxiliary subunit cornichon-2, whereas cornichon-2 knockdown did not affect PSD-95-mediated regulation of AMPAR eEPSC. Combining these observations, our data elucidate that PSD-95 and SAP102 differentially influence basic synaptic properties and synaptic current kinetics potentially via different AMPAR auxiliary subunits. NEW & NOTEWORTHY Synaptic scaffold proteins postsynaptic density (PSD)-95-like, disk-large (DLG) membrane-associated guanylate kinase (PSD-MAGUKs) regulate synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) function. However, the functional diversity among different PSD-MAGUKs remains to be categorized. We show that distinct from PSD-95, SAP102 increase the AMPAR synaptic current decay time, and the effect of SAP102 on synaptic AMPAR function requires the AMPAR auxiliary subunit cornichon-2. Our data suggest that PSD-MAGUKs target and modulate different AMPAR complexes to exert specific experience-dependent modification of the excitatory circuit.

    View details for DOI 10.1152/jn.00731.2017

    View details for Web of Science ID 000451350100012

    View details for PubMedID 30067114

    View details for PubMedCentralID PMC6230800

  • A Dendritic Guidance Receptor Complex Brings Together Distinct Actin Regulators to Drive Efficient F-Actin Assembly and Branching DEVELOPMENTAL CELL Zou, W., Dong, X., Broederdorf, T. R., Shen, A., Kramer, D. A., Shi, R., Liang, X., Miller, D. M., Xiang, Y. K., Yasuda, R., Chen, B., Shen, K. 2018; 45 (3): 362-+

    Abstract

    Proper morphogenesis of dendrites plays a fundamental role in the establishment of neural circuits. The molecular mechanism by which dendrites grow highly complex branches is not well understood. Here, using the Caenorhabditis elegans PVD neuron, we demonstrate that high-order dendritic branching requires actin polymerization driven by coordinated interactions between two membrane proteins, DMA-1 and HPO-30, with their cytoplasmic interactors, the RacGEF TIAM-1 and the actin nucleation promotion factor WAVE regulatory complex (WRC). The dendrite branching receptor DMA-1 directly binds to the PDZ domain of TIAM-1, while the claudin-like protein HPO-30 directly interacts with the WRC. On dendrites, DMA-1 and HPO-30 form a receptor-associated signaling complex to bring TIAM-1 and the WRC to close proximity, leading to elevated assembly of F-actin needed to drive high-order dendrite branching. The synergistic activation of F-actin assembly by scaffolding distinct actin regulators might represent a general mechanism in promoting complex dendrite arborization.

    View details for PubMedID 29738713

  • Shank Proteins Differentially Regulate Synaptic Transmission (vol 4, e0163-15.2017, 2017) ENEURO Shi, R., Redman, P., Ghose, D., Hwang, H., Liu, Y., Ren, X., Ding, L. J., Liu, M., Jones, K. J., Xu, W. 2018; 5 (1)
  • Dissecting the Role of P/Q-Type Calcium Channels in Corticothalamic Circuit Dysfunction and Absence Epilepsy. The Journal of neuroscience : the official journal of the Society for Neuroscience Shi, R., Schroeder, G. M., Nimarko, A. F. 2016; 36 (21): 5677–79

    View details for PubMedID 27225758

  • Differential requirement for NMDAR activity in SAP97 beta-mediated regulation of the number and strength of glutamatergic AMPAR-containing synapses JOURNAL OF NEUROPHYSIOLOGY Liu, M., Lewis, L. D., Shi, R., Brown, E. N., Xu, W. 2014; 111 (3): 648-658

    Abstract

    PSD-95-like, disc-large (DLG) family membrane-associated guanylate kinase proteins (PSD/DLG-MAGUKs) are essential for regulating synaptic AMPA receptor (AMPAR) function and activity-dependent trafficking of AMPARs. Using a molecular replacement strategy to replace endogenous PSD-95 with SAP97β, we show that the prototypic β-isoform of the PSD-MAGUKs, SAP97β, has distinct NMDA receptor (NMDAR)-dependent roles in regulating basic properties of AMPAR-containing synapses. SAP97β enhances the number of AMPAR-containing synapses in an NMDAR-dependent manner, whereas its effect on the size of unitary synaptic response is not fully dependent on NMDAR activity. These effects contrast with those of PSD-95α, which increases both the number of AMPAR-containing synapses and the size of unitary synaptic responses, with or without NMDAR activity. Our results suggest that SAP97β regulates synaptic AMPAR content by increasing surface expression of GluA1-containing AMPARs, whereas PSD-95α enhances synaptic AMPAR content presumably by increasing the synaptic scaffold capacity for synaptic AMPARs. Our approach delineates discrete effects of different PSD-MAGUKs on principal properties of glutamatergic synaptic transmission. Our results suggest that the molecular diversity of PSD-MAGUKs can provide rich molecular substrates for differential regulation of glutamatergic synapses in the brain.

    View details for DOI 10.1152/jn.00262.2013

    View details for Web of Science ID 000331215500019

    View details for PubMedID 24225540

    View details for PubMedCentralID PMC3921414