Bio

Clinical Focus


  • Soft Tissue Neoplasms
  • Musculoskeletal Diseases
  • Sports Injuries
  • Diagnostic Radiology

Academic Appointments


Professional Education


  • Fellowship:University of California Davis (1998) CA
  • Internship:Creighton University (1993) NE
  • Board Certification: Diagnostic Radiology, American Board of Radiology (1997)
  • Residency:University of California Davis (1997) CA
  • Medical Education:Creighton University (1992) NE

Research & Scholarship

Current Research and Scholarly Interests


Sports injuries, MRI of the musculoskeletal system, online education

Publications

Journal Articles


  • Foot and ankle injuries in sport: imaging correlation with arthroscopic and surgical findings. Clinics in sports medicine Hunt, K. J., Githens, M., Riley, G. M., Kim, M., Gold, G. E. 2013; 32 (3): 525-557

    Abstract

    Foot and ankle injuries are common in sport. Although many available imaging techniques can be useful in identifying and classifying injuries, magnetic resonance imaging (MRI) provides high levels of sensitivity and specificity for articular and soft-tissue injuries. Arthroscopic and minimally invasive treatment techniques for foot and ankle injuries are rapidly evolving, minimizing morbidity and improving postoperative rehabilitation and return to play. Correlation between MRI and surgical findings can aid in both accessing and treating pathologic processes and structures.

    View details for DOI 10.1016/j.csm.2013.03.007

    View details for PubMedID 23773880

  • Hip-femoral acetabular impingement. Clinics in sports medicine Anderson, C. N., Riley, G. M., Gold, G. E., Safran, M. R. 2013; 32 (3): 409-425

    Abstract

    Magnetic resonance imaging (MRI) has become a valuable technology for the diagnosis and treatment of femoroacetabular impingement (FAI). This article reviews the basic pathophysiology of FAI, as well as the techniques and indications for MRI and magnetic resonance arthrography. Normal MRI anatomy of the hip and pathologic MRI anatomy associated with FAI are also discussed. Several case examples are presented demonstrating the diagnosis and treatment of FAI.

    View details for DOI 10.1016/j.csm.2013.03.010

    View details for PubMedID 23773875

  • Magnetic Resonance Arthrography RADIOLOGIC CLINICS OF NORTH AMERICA Chundru, U., Riley, G. M., Steinbach, L. S. 2009; 47 (3): 471-?

    Abstract

    Magnetic resonance arthrography is widely used throughout the world for joint imaging. It extends the capabilities of conventional MR imaging because contrast solution distends the joint capsule, outlines intraarticular structures, and extends into soft tissue tears and defects. MR arthrography exploits the natural advantages gained from a joint effusion and can be performed on any joint.

    View details for DOI 10.1016/j.rcl.2009.02.001

    View details for Web of Science ID 000265891400010

    View details for PubMedID 19361671

  • Magnetic resonance imaging in the evaluation of sports injuries of the foot and ankle - A pictorial essay JOURNAL OF THE AMERICAN PODIATRIC MEDICAL ASSOCIATION Riley, G. M. 2007; 97 (1): 59-67

    Abstract

    Magnetic resonance imaging is playing an increasingly important role in evaluation of the injured athlete's foot and ankle. Magnetic resonance imaging allows accurate detection of bony abnormalities, such as stress fractures, and soft-tissue abnormalities, including ligament tears, tendon tears, and tendinopathy. The interpreter of magnetic resonance images should systematically review the images, noting normal structures and accounting for changes in soft-tissue and bony signal.

    View details for Web of Science ID 000243774300007

    View details for PubMedID 17218626

  • Magnetic resonance imaging of sports injuries of the elbow. Topics in magnetic resonance imaging Thornton, R., Riley, G. M., Steinbach, L. S. 2003; 14 (1): 69-86

    Abstract

    Many abnormalities seen in the elbow result from trauma, often from sports such as baseball and tennis. Elbow problems are frequently related to the medial tension-lateral compression phenomenon, where repeated valgus stress produces flexor-pronator strain, ulnar collateral ligament sprain, ulnar traction spurring, and ulnar neuropathy. Lateral compression causes osteochondral lesions of the capitellum and radial head, degenerative arthritis, and loose bodies. Other elbow abnormalities seen on magnetic resonance imaging include radial collateral ligament injuries, biceps and triceps tendon injuries, other nerve entrapment syndromes, loose bodies, osseous and soft-tissue trauma, arthritis, and masses, including bursae.

    View details for PubMedID 12606870

  • Intraosseous lipoma of the calcaneus FOOT & ANKLE INTERNATIONAL Greenspan, A., Raiszadeh, K., RILEY, G. M., MATTHEWS, D. 1997; 18 (1): 53-56

    Abstract

    We present two patients with pathologically proven intraosseous lipoma of the os calcis. A review of the literature, the radiologic criteria, and the differential diagnosis are provided.

    View details for Web of Science ID A1997WC88800012

    View details for PubMedID 9013117

  • Fibrous dysplasia of a parietal bone JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY RILEY, G. M., Greenspan, A., Poirier, V. C. 1997; 21 (1): 41-43

    View details for Web of Science ID A1997WF02100009

    View details for PubMedID 9022768

Footer Links:

Stanford Medicine Resources: