Professional Education

  • Master of Science, Stanford University, BIO-MS (2010)
  • Bachelor of Science, Stanford University, BIO-BSH (2010)
  • Doctor of Philosophy, University of California San Francisco (2017)


All Publications

  • Resolving the Micro-Macro Disconnect to Address Core Features of Seizure Networks NEURON Farrell, J. S., Quynh-Anh Nguyen, Soltesz, I. 2019; 101 (6): 1016–28
  • The GABAA Receptor β Subunit Is Required for Inhibitory Transmission. Neuron Nguyen, Q. A., Nicoll, R. A. 2018; 98 (4): 718–25.e3


    While the canonical assembly of a GABAA receptor contains two α subunits, two β subunits, and a fifth subunit, it is unclear which variants of each subunit are necessary for native receptors. We used CRISPR/Cas9 to dissect the role of the GABAA receptor β subunits in inhibitory transmission onto hippocampal CA1 pyramidal cells and found that deletion of all β subunits 1, 2, and 3 completely eliminated inhibitory responses. In addition, only knockout of β3, alone or in combination with another β subunit, impaired inhibitory synaptic transmission. We found that β3 knockout impairs inhibitory input from PV but not SOM expressing interneurons. Furthermore, expression of β3 alone on the background of the β1-3 subunit knockout was sufficient to restore synaptic and extrasynaptic inhibitory transmission. These findings reveal a crucial role for the β3 subunit in inhibitory transmission and identify a synapse-specific role of the β3 subunit in GABAergic synaptic transmission.

    View details for DOI 10.1016/j.neuron.2018.03.046

    View details for PubMedID 29706582

    View details for PubMedCentralID PMC6089239

  • Distinct roles for extracellular and intracellular domains in neuroligin function at inhibitory synapses. eLife Nguyen, Q. A., Horn, M. E., Nicoll, R. A. 2016; 5


    Neuroligins (NLGNs) are postsynaptic cell adhesion molecules that interact trans-synaptically with neurexins to mediate synapse development and function. NLGN2 is only at inhibitory synapses while NLGN3 is at both excitatory and inhibitory synapses. We found that NLGN3 function at inhibitory synapses in rat CA1 depends on the presence of NLGN2 and identified a domain in the extracellular region that accounted for this functional difference between NLGN2 and 3 specifically at inhibitory synapses. We further show that the presence of a cytoplasmic tail (c-tail) is indispensible, and identified two domains in the c-tail that are necessary for NLGN function at inhibitory synapses. These domains point to a gephyrin-dependent mechanism that is disrupted by an autism-associated mutation at R705 and a gephyrin-independent mechanism reliant on a putative phosphorylation site at S714. Our work highlights unique and separate roles for the extracellular and intracellular regions in specifying and carrying out NLGN function respectively.

    View details for DOI 10.7554/eLife.19236

    View details for PubMedID 27805570

    View details for PubMedCentralID PMC5098909

  • Autism-associated mutation inhibits protein kinase C-mediated neuroligin-4X enhancement of excitatory synapses. Proceedings of the National Academy of Sciences of the United States of America Bemben, M. A., Nguyen, Q. A., Wang, T., Li, Y., Nicoll, R. A., Roche, K. W. 2015; 112 (8): 2551–56


    Autism spectrum disorders (ASDs) comprise a highly heritable, multifarious group of neurodevelopmental disorders, which are characterized by repetitive behaviors and impairments in social interactions. Point mutations have been identified in X-linked Neuroligin (NLGN) 3 and 4X genes in patients with ASDs and all of these reside in their extracellular domains except for a single point mutation in the cytoplasmic domain of NLGN4X in which an arginine is mutated to a cysteine (R704C). Here we show that endogenous NLGN4X is robustly phosphorylated by protein kinase C (PKC) at T707, and R704C completely eliminates T707 phosphorylation. Endogenous NLGN4X is intensely phosphorylated on T707 upon PKC stimulation in human neurons. Furthermore, a phospho-mimetic mutation at T707 has a profound effect on NLGN4X-mediated excitatory potentiation. Our results now establish an important interplay between a genetic mutation, a key posttranslational modification, and robust synaptic changes, which can provide insights into the synaptic dysfunction of ASDs.

    View details for DOI 10.1073/pnas.1500501112

    View details for PubMedID 25675530

    View details for PubMedCentralID PMC4345621