Bio

Bio


Quanyi is a postdoctoral fellow in Cardiovascular Medicine. He studied cancer epigenomics at Wuhan University in China and received his PhD in biochemistry and molecular biology. He joined Quertermous lab after working in Dr. Kornberg's lab at UCSF as a postdoc in developmental biology. His current research focuses on how causal coronary artery disease (CAD) variations regulate transcription factors (TFs) binding and causal genes expression, and how the variations affect chromatin state, accessibility and chromosomal architecture in CAD associated loci.

Professional Education


  • Doctor of Philosophy, Wuhan University (2016)
  • Bachelor of Science, Wuhan University (2010)

Research & Scholarship

Current Research and Scholarly Interests


1. Using pooled ChIPseq, ATACseq and HiC approaches to identify the cis- and trans- effects of genetic variations and define them as binding(bl) QTLs, chromatin accessibility(ca) QTLs, and looping(cl) QTLs which are associated with CAD risk. Fine map of the chromatin architecture and genomic interactions of SNP-Genes in smooth muscle cells.
2. With single-cell ATAC and RNA sequencing, characterize the hot spots of open chromatin regions and identify the transcription factors (TFs) and lncRNA during smooth muscle cells differentiation driven by PDGF-DD.
3. Discovered the interaction between the two master TFs associated with CAD, AP-1 and TCF21. Revealed the underlying epigenetic mechanism in their co-regulation of transcription. Fine mapped the co-regulatory network across the genome, including TFs binding, chromatin accessibility and H3K27ac distribution.
4. Identified SMAD3 as a causal gene in CAD. Mapped its competitive binding pattern with TCF21 on open chromatin regions of smooth muscle cells.

Lab Affiliations


Publications

All Publications


  • The Environment-Sensing Aryl-Hydrocarbon Receptor Inhibits the Chondrogenic Fate of Modulated Smooth Muscle Cells in Atherosclerotic Lesions. Circulation Kim, J. B., Zhao, Q., Nguyen, T., Pjanic, M., Cheng, P., Wirka, R., Travisano, S., Nagao, M., Kundu, R., Quertermous, T. 2020

    Abstract

    Background: Smooth muscle cells (SMC) play a critical role in atherosclerosis. The Aryl hydrocarbon receptor (AHR) is an environment-sensing transcription factor that contributes to vascular development, and has been implicated in coronary artery disease (CAD) risk. We hypothesized that AHR can affect atherosclerosis by regulating phenotypic modulation of SMC. Methods: We combined RNA-Seq, ChIP-Seq, ATAC-Seq and in-vitro assays in human coronary artery SMC (HCASMC), with single-cell RNA-Seq (scRNA-Seq), histology, and RNAscope in an SMC-specific lineage-tracing Ahr knockout mouse model of atherosclerosis to better understand the role of AHR in vascular disease. Results: Genomic studies coupled with functional assays in cultured HCASMC revealed that AHR modulates HCASMC phenotype and suppresses ossification in these cells. Lineage tracing and activity tracing studies in the mouse aortic sinus showed that the Ahr pathway is active in modulated SMC in the atherosclerotic lesion cap. Furthermore, scRNA-Seq studies of the SMC-specific Ahr knockout mice showed a significant increase in the proportion of modulated SMC expressing chondrocyte markers such as Col2a1 and Alpl, which localized to the lesion neointima. These cells, which we term "chondromyocytes" (CMC), were also identified in the neointima of human coronary arteries. In histological analyses, these changes manifested as larger lesion size, increased lineage-traced SMC participation in the lesion, decreased lineage-traced SMC in the lesion cap, and increased alkaline phosphatase activity in lesions in the Ahr knockout compared to wild-type mice. We propose that AHR is likely protective based on these data and inference from human genetic analyses. Conclusions: Overall, we conclude that AHR promotes maintenance of lesion cap integrity and diminishes the disease related SMC-to-CMC transition in atherosclerotic tissues.

    View details for DOI 10.1161/CIRCULATIONAHA.120.045981

    View details for PubMedID 32441123

  • Coronary Disease Associated Gene TCF21 Inhibits Smooth Muscle Cell Differentiation by Blocking the Myocardin-Serum Response Factor Pathway. Circulation research Nagao, M., Lyu, Q., Zhao, Q., Wirka, R. C., Bagga, J., Nguyen, T., Cheng, P., Kim, J. B., Pjanic, M., Miano, J. M., Quertermous, T. 2019

    Abstract

    Rationale: The gene encoding transcription factor TCF21 has been linked to coronary artery disease (CAD) risk by human genome wide association studies (GWAS) in multiple racial ethnic groups. In murine models, Tcf21 is required for phenotypic modulation of smooth muscle cells (SMC) in atherosclerotic tissues and promotes a fibroblast phenotype in these cells. In humans, TCF21 expression inhibits risk for CAD. The molecular mechanism by which TCF21 regulates SMC phenotype is not known. Objective: To better understand how TCF21 affects SMC phenotype, we sought to investigate the possible mechanisms by which it regulates the lineage determining myocardin (MYOCD)-serum response factor (SRF) pathway. Methods and Results: Modulation of TCF21 expression in HCASMC revealed that TCF21 suppresses a broad range of SMC markers, as well as key SMC transcription factors MYOCD and SRF, at the RNA and protein level. We conducted chromatin immunoprecipitation (ChIP)-sequencing to map SRF binding sites in HCASMC, showing that binding is colocalized in the genome with TCF21, including at a novel enhancer in the SRF gene, and at the MYOCD gene promoter. In vitro genome editing indicated that the SRF enhancer CArG box regulates transcription of the SRF gene, and mutation of this conserved motif in the orthologous mouse SRF enhancer revealed decreased SRF expression in aorta and heart tissues. Direct TCF21 binding and transcriptional inhibition at co-localized sites were established by reporter gene transfection assays. Chromatin immunoprecipitation and protein co-immunoprecipitation studies provided evidence that TCF21 blocks MYOCD and SRF association by direct TCF21-MYOCD interaction. Conclusions: These data indicate that TCF21 antagonizes the MYOCD-SRF pathway through multiple mechanisms, further establishing a role for this CAD associated gene in fundamental SMC processes and indicating the importance of smooth muscle response to vascular stress and phenotypic modulation of this cell type in CAD risk.

    View details for DOI 10.1161/CIRCRESAHA.119.315968

    View details for PubMedID 31815603

  • TCF21 and AP-1 interact through epigenetic modifications to regulate coronary artery disease gene expression. Genome medicine Zhao, Q., Wirka, R., Nguyen, T., Nagao, M., Cheng, P., Miller, C. L., Kim, J. B., Pjanic, M., Quertermous, T. 2019; 11 (1): 23

    Abstract

    Genome-wide association studies have identified over 160 loci that are associated with coronary artery disease. As with other complex human diseases, risk in coronary disease loci is determined primarily by altered expression of the causal gene, due to variation in binding of transcription factors and chromatin-modifying proteins that directly regulate the transcriptional apparatus. We have previously identified a coronary disease network downstream of the disease-associated transcription factor TCF21, and in work reported here extends these studies to investigate the mechanisms by which it interacts with the AP-1 transcription complex to regulate local epigenetic effects in these downstream coronary disease loci.Genomic studies, including chromatin immunoprecipitation sequencing, RNA sequencing, and protein-protein interaction studies, were performed in human coronary artery smooth muscle cells.We show here that TCF21 and JUN regulate expression of two presumptive causal coronary disease genes, SMAD3 and CDKN2B-AS1, in part by interactions with histone deacetylases and acetyltransferases. Genome-wide TCF21 and JUN binding is jointly localized and particularly enriched in coronary disease loci where they broadly modulate H3K27Ac and chromatin state changes linked to disease-related processes in vascular cells. Heterozygosity at coronary disease causal variation, or genome editing of these variants, is associated with decreased binding of both JUN and TCF21 and loss of expression in cis, supporting a transcriptional mechanism for disease risk.These data show that the known chromatin remodeling and pioneer functions of AP-1 are a pervasive aspect of epigenetic control of transcription, and thus, the risk in coronary disease-associated loci, and that interaction of AP-1 with TCF21 to control epigenetic features, contributes to the genetic risk in loci where they co-localize.

    View details for PubMedID 31014396

  • Coronary artery disease genes SMAD3 and TCF21 promote opposing interactive genetic programs that regulate smooth muscle cell differentiation and disease risk. PLoS genetics Iyer, D., Zhao, Q., Wirka, R., Naravane, A., Nguyen, T., Liu, B., Nagao, M., Cheng, P., Miller, C. L., Kim, J. B., Pjanic, M., Quertermous, T. 2018; 14 (10): e1007681

    Abstract

    Although numerous genetic loci have been associated with coronary artery disease (CAD) with genome wide association studies, efforts are needed to identify the causal genes in these loci and link them into fundamental signaling pathways. Recent studies have investigated the disease mechanism of CAD associated gene SMAD3, a central transcription factor (TF) in the TGFβ pathway, investigating its role in smooth muscle biology. In vitro studies in human coronary artery smooth muscle cells (HCASMC) revealed that SMAD3 modulates cellular phenotype, promoting expression of differentiation marker genes while inhibiting proliferation. RNA sequencing and chromatin immunoprecipitation sequencing studies in HCASMC identified downstream genes that reside in pathways which mediate vascular development and atherosclerosis processes in this cell type. HCASMC phenotype, and gene expression patterns promoted by SMAD3 were noted to have opposing direction of effect compared to another CAD associated TF, TCF21. At sites of SMAD3 and TCF21 colocalization on DNA, SMAD3 binding was inversely correlated with TCF21 binding, due in part to TCF21 locally blocking chromatin accessibility at the SMAD3 binding site. Further, TCF21 was able to directly inhibit SMAD3 activation of gene expression in transfection reporter gene studies. In contrast to TCF21 which is protective toward CAD, SMAD3 expression in HCASMC was shown to be directly correlated with disease risk. We propose that the pro-differentiation action of SMAD3 inhibits dedifferentiation that is required for HCASMC to expand and stabilize disease plaque as they respond to vascular stresses, counteracting the protective dedifferentiating activity of TCF21 and promoting disease risk.

    View details for PubMedID 30307970

Latest information on COVID-19