Academic Appointments


All Publications

  • Image-Guided Transurethral Resection of Bladder Tumors - Current Practice and Future Outlooks. Bladder cancer (Amsterdam, Netherlands) Chang, T. C., Marcq, G., Kiss, B., Trivedi, D. R., Mach, K. E., Liao, J. C. 2017; 3 (3): 149?59


    Transurethral resection of bladder tumor (TURBT) under white light cystoscopy (WLC) is the cornerstone for the diagnosis, removal and local staging of non-muscle invasive bladder cancer (NMIBC). Despite technological improvements over the decades, significant shortcomings remain with WLC for tumor detection, thereby impacting the surgical quality and contributing to tumor recurrence and progression. Enhanced cystoscopy modalities such as blue light cystoscopy (BLC) and narrow band imaging (NBI) aid resections by highlighting tumors that might be missed on WLC. Optical biopsy technologies such as confocal laser endomicroscopy (CLE) and optical coherence tomography (OCT) characterize tissue in real-time to ensure a more thorough resection. New resection techniques, particularly en bloc resection, are actively under investigation to improve the overall quality of resections and aid pathologic interpretation. Moreover, new image processing computer algorithms may improve perioperative planning and longitudinal follow-up. Clinical translation of molecular imaging agents is also on the horizon to improve optical diagnosis of bladder cancer. This review focuses on emerging technologies that can impact the quality of TURBT to improve the overall management of NMIBC.

    View details for PubMedID 28824942

    View details for PubMedCentralID PMC5545914

  • In vivo biodistribution and toxicity of intravesical administration of quantum dots for optical molecular imaging of bladder cancer. Scientific reports Pan, Y., Chang, T., Marcq, G., Liu, C., Kiss, B., Rouse, R., Mach, K. E., Cheng, Z., Liao, J. C. 2017; 7 (1): 9309


    Optical molecular imaging holds the potential to improve cancer diagnosis. Fluorescent nanoparticles such as quantum dots (QD) offer superior optical characteristics compared to organic dyes, but their in vivo application is limited by potential toxicity from systemic administration. Topical administration provides an attractive route for targeted nanoparticles with the possibility of minimizing exposure and reduced dose. Previously, we demonstrated successful ex vivo endoscopic imaging of human bladder cancer by topical (i.e. intravesical) administration of QD-conjugated anti-CD47. Herein we investigate in vivo biodistribution and toxicity of intravesically instilled free QD and anti-CD47-QD in mice. In vivo biodistribution of anti-CD47-QD was assessed with inductively coupled plasma mass spectrometry. Local and systemic toxicity was assessed using blood tests, organ weights, and histology. On average, there was no significant accumulation of QD outside of the bladder, although in some mice we detected extravesical biodistribution of QD suggesting a route for systemic exposure under some conditions. There were no indications of acute toxicity up to 7 days after instillation. Intravesical administration of targeted nanoparticles can reduce systemic exposure, but for clinical use, nanoparticles with established biosafety profiles should be used to decrease long-term toxicity in cases where systemic exposure occurs.

    View details for PubMedID 28839158

  • Optical Biopsy of Bladder Cancer Using Crowd-Sourced Assessment. JAMA surgery Chen, S. P., Kirsch, S., Zlatev, D. V., Chang, T., Comstock, B., Lendvay, T. S., Liao, J. C. 2016; 151 (1): 90-93

    View details for DOI 10.1001/jamasurg.2015.3121

    View details for PubMedID 26422334

  • Endoscopic molecular imaging of human bladder cancer using a CD47 antibody SCIENCE TRANSLATIONAL MEDICINE Pan, Y., Volkmer, J., Mach, K. E., Rouse, R. V., Liu, J., Sahoo, D., Chang, T. C., Metzner, T. J., Kang, L., van de Rijn, M., Skinner, E. C., Gambhir, S. S., Weissman, I. L., Liao, J. C. 2014; 6 (260)


    A combination of optical imaging technologies with cancer-specific molecular imaging agents is a potentially powerful strategy to improve cancer detection and enable image-guided surgery. Bladder cancer is primarily managed endoscopically by white light cystoscopy with suboptimal diagnostic accuracy. Emerging optical imaging technologies hold great potential for improved diagnostic accuracy but lack imaging agents for molecular specificity. Using fluorescently labeled CD47 antibody (anti-CD47) as molecular imaging agent, we demonstrated consistent identification of bladder cancer with clinical grade fluorescence imaging systems, confocal endomicroscopy, and blue light cystoscopy in fresh surgically removed human bladders. With blue light cystoscopy, the sensitivity and specificity for CD47-targeted imaging were 82.9 and 90.5%, respectively. We detected variants of bladder cancers, which are diagnostic challenges, including carcinoma in situ, residual carcinoma in tumor resection bed, recurrent carcinoma following prior intravesical immunotherapy with Bacillus Calmette-GuÚrin (BCG), and excluded cancer from benign but suspicious-appearing mucosa. CD47-targeted molecular imaging could improve diagnosis and resection thoroughness for bladder cancer.

    View details for DOI 10.1126/scitranslmed.3009457

    View details for Web of Science ID 000343920500006

  • A small molecule p75(NTR) ligand prevents cognitive deficits and neurite degeneration in an Alzheimer's mouse model. Neurobiology of aging Knowles, J. K., Simmons, D. A., Nguyen, T. V., Vander Griend, L., Xie, Y., Zhang, H., Yang, T., Pollak, J., Chang, T., Arancio, O., Buckwalter, M. S., Wyss-Coray, T., Massa, S. M., Longo, F. M. 2013; 34 (8): 2052-2063


    The p75 neurotrophin receptor (p75(NTR)) is associated with multiple mechanisms linked to Alzheimer's disease (AD); hence, modulating its function might confer therapeutic effects. In previous inávitro work, we developed small molecule p75(NTR) ligands that inhibited amyloid-?-induced degenerative signaling and prevented neurite degeneration. In the present study, a prototype p75(NTR) ligand, LM11A-31, was administered orally to the Thy-1 hAPP(Lond/Swe) (APP(L/S)) AD mouse model. LM11A-31 reached brain concentrations known to inhibit degenerative signaling without toxicity or induction of hyperalgesia. It prevented deficits in novel object recognition after 2.5 months and, in a separate cohort, deficits in Y-maze performance after 3 months of treatment. Stereology studies found that the number and size of basal forebrain cholinergic neurons, which are normal in APP(L/S) mice, were unaffected. Neuritic dystrophy, however, was readily apparent in the basal forebrain, hippocampus and cortex, and was significantly reduced by LM11A-31, with no effect on amyloid levels. These studies reveal that p75(NTR) is an important and tractable inávivo drug target for AD, with LM11A-31 representing a novel class of therapeutic candidates.

    View details for DOI 10.1016/j.neurobiolaging.2013.02.015

    View details for PubMedID 23545424

  • Interobserver agreement of confocal laser endomicroscopy for bladder cancer. Journal of endourology Chang, T. C., Liu, J., Hsiao, S. T., Pan, Y., Mach, K. E., Leppert, J. T., McKenney, J. K., Rouse, R. V., Liao, J. C. 2013; 27 (5): 598-603


    Emerging optical imaging technologies such as confocal laser endomicroscopy (CLE) hold promise in improving bladder cancer diagnosis. The purpose of this study was to determine the interobserver agreement of image interpretation using CLE for bladder cancer.Experienced CLE urologists (n=2), novice CLE urologists (n=6), pathologists (n=4), and nonclinical researchers (n=5) were recruited to participate in a 2-hour computer-based training consisting of a teaching and validation set of intraoperative white light cystoscopy (WLC) and CLE video sequences from patients undergoing transurethral resection of bladder tumor. Interobserver agreement was determined using the ? statistic.Of the 31 bladder regions analyzed, 19 were cancer and 12 were benign. For cancer diagnosis, experienced CLE urologists had substantial agreement for both CLE and WLC+CLE (90%, ? 0.80) compared with moderate agreement for WLC alone (74%, ? 0.46), while novice CLE urologists had moderate agreement for CLE (77%, ? 0.55), WLC (78%, ? 0.54), and WLC+CLE (80%, ? 0.59). Pathologists had substantial agreement for CLE (81%, ? 0.61), and nonclinical researchers had moderate agreement (77%, ? 0.49) in cancer diagnosis. For cancer grading, experienced CLE urologists had fair to moderate agreement for CLE (68%, ? 0.64), WLC (74%, ? 0.67), and WLC+CLE (53%, ? 0.33), as did novice CLE urologists for CLE (53%, ? 0.39), WLC (66%, ? 0.50), and WLC+CLE (61%, ? 0.49). Pathologists (65%, ? 0.55) and nonclinical researchers (61%, ? 0.56) both had moderate agreement for CLE in cancer grading.CLE is an adoptable technology for cancer diagnosis in novice CLE observers after a short training with moderate interobserver agreement and diagnostic accuracy similar to WLC alone. Experienced CLE observers may be capable of achieving substantial levels of agreement for cancer diagnosis that is higher than with WLC alone.

    View details for DOI 10.1089/end.2012.0549

    View details for PubMedID 23072435

    View details for PubMedCentralID PMC3643225

  • Probe-based Confocal Laser Endomicroscopy of the Urinary Tract: The Technique JOVE-JOURNAL OF VISUALIZED EXPERIMENTS Chang, T. C., Liu, J., Liao, J. C. 2013


    Probe-based confocal laser endomicroscopy (CLE) is an emerging optical imaging technology that enables real-time in vivo microscopy of mucosal surfaces during standard endoscopy. With applications currently in the respiratory and gastrointestinal tracts, CLE has also been explored in the urinary tract for bladder cancer diagnosis. Cellular morphology and tissue microarchitecture can be resolved with micron scale resolution in real time, in addition to dynamic imaging of the normal and pathological vasculature. The probe-based CLE system (Cellvizio, Mauna Kea Technologies, France) consists of a reusable fiberoptic imaging probe coupled to a 488 nm laser scanning unit. The imaging probe is inserted in the working channels of standard flexible and rigid endoscopes. An endoscope-based CLE system (Optiscan, Australia), in which the confocal endomicroscopy functionality is integrated onto the endoscope, is also used in the gastrointestinal tract. Given the larger scope diameter, however, application in the urinary tract is currently limited to ex vivo use. Confocal image acquisition is done through direct contact of the imaging probe with the target tissue and recorded as video sequences. As in the gastrointestinal tract, endomicroscopy of the urinary tract requires an exogenenous contrast agent-most commonly fluorescein, which can be administered intravenously or intravesically. Intravesical administration is a well-established method to introduce pharmacological agents locally with minimal systemic toxicity that is unique to the urinary tract. Fluorescein rapidly stains the extracellular matrix and has an established safety profile. Imaging probes of various diameters enable compatibility with different caliber endoscopes. To date, 1.4 and 2.6 mm probes have been evaluated with flexible and rigid cystoscopy. Recent availability of a < 1 mm imaging probe opens up the possibility of CLE in the upper urinary tract during ureteroscopy. Fluorescence cystoscopy (i.e. photodynamic diagnosis) and narrow band imaging are additional endoscope-based optical imaging modalities that can be combined with CLE to achieve multimodal imaging of the urinary tract. In the future, CLE may be coupled with molecular contrast agents such as fluorescently labeled peptides and antibodies for endoscopic imaging of disease processes with molecular specificity.

    View details for DOI 10.3791/4409

    View details for Web of Science ID 000209226200018

    View details for PubMedCentralID PMC3582651

  • Molecular imaging of urothelial cancer using EGFR-binding peptides Pan, Y., Liu, J., Chang, T. C., Hsiao, S., Mach, K. E., Liao, J. C. AMER ASSOC CANCER RESEARCH. 2012
  • Next generation of optical diagnostics for bladder cancer using probe-based confocal laser endomicroscopy Conference on Photonic Therapeutics and Diagnostics VIII Liu, J., Chang, T. C., Pan, Y., Hsiao, S. T., Mach, K. E., Jensen, K. C., Liao, J. C. SPIE-INT SOC OPTICAL ENGINEERING. 2012

    View details for DOI 10.1117/12.907623

    View details for Web of Science ID 000302580900030

  • Small Molecule, Non-Peptide p75(NTR) Ligands Inhibit A beta-Induced Neurodegeneration and Synaptic Impairment PLOS ONE Yang, T., Knowles, J. K., Lu, Q., Zhang, H., Arancio, O., Moore, L. A., Chang, T., Wang, Q., Andreasson, K., Rajadas, J., Fuller, G. G., Xie, Y., Massa, S. M., Longo, F. M. 2008; 3 (11)


    The p75 neurotrophin receptor (p75(NTR)) is expressed by neurons particularly vulnerable in Alzheimer's disease (AD). We tested the hypothesis that non-peptide, small molecule p75(NTR) ligands found to promote survival signaling might prevent Abeta-induced degeneration and synaptic dysfunction. These ligands inhibited Abeta-induced neuritic dystrophy, death of cultured neurons and Abeta-induced death of pyramidal neurons in hippocampal slice cultures. Moreover, ligands inhibited Abeta-induced activation of molecules involved in AD pathology including calpain/cdk5, GSK3beta and c-Jun, and tau phosphorylation, and prevented Abeta-induced inactivation of AKT and CREB. Finally, a p75(NTR) ligand blocked Abeta-induced hippocampal LTP impairment. These studies support an extensive intersection between p75(NTR) signaling and Abeta pathogenic mechanisms, and introduce a class of specific small molecule ligands with the unique ability to block multiple fundamental AD-related signaling pathways, reverse synaptic impairment and inhibit Abeta-induced neuronal dystrophy and death.

    View details for DOI 10.1371/journal.pone.0003604

    View details for Web of Science ID 000265134200003

    View details for PubMedID 18978948

    View details for PubMedCentralID PMC2575383

Footer Links:

Stanford Medicine Resources: