School of Medicine


Showing 11-20 of 70 Results

  • Thomas Clandinin

    Thomas Clandinin

    Shooter Family Professor

    Current Research and Scholarly Interests The Clandinin lab focuses on understanding how neuronal circuits assemble and function to perform specific computations and guide behavior. Taking advantage of a rich armamentarium of genetic tools available in the fruit fly, combined with imaging, physiology and analytical techniques drawn from systems neuroscience, we examine a variety of visual circuits.

  • Shaul Druckmann

    Shaul Druckmann

    Assistant Professor of Neurobiology and of Psychiatry and Behavioral Sciences

    Current Research and Scholarly Interests Our research goal is to understand how dynamics in neuronal circuits relate and constrain the representation of information and computations upon it. We adopt three synergistic strategies: First, we analyze neural circuit population recordings to better understand the relation between neural dynamics and behavior, Second, we theoretically explore the types of dynamics that could be associated with particular network computations. Third, we analyze the structural properties of neural circuits.

  • Surya Ganguli

    Surya Ganguli

    Associate Professor of Applied Physics and , by courtesy, of Neurobiology and of Electrical Engineering

    Current Research and Scholarly Interests Theoretical / computational neuroscience

  • Lisa Giocomo

    Lisa Giocomo

    Associate Professor of Neurobiology

    Current Research and Scholarly Interests My laboratory studies the cellular and molecular mechanisms underlying the organization of cortical circuits important for spatial navigation and memory. We are particularly focused on medial entorhinal cortex, where many neurons fire in spatially specific patterns and thus offer a measurable output for molecular manipulations. We combine electrophysiology, genetic approaches and behavioral paradigms to unravel the mechanisms and behavioral relevance of non-sensory cortical organization. Our first line of research is focused on determining the cellular and molecular components crucial to the neural representation of external space by functionally defined cell types in entorhinal cortex (grid, border and head direction cells). We plan to use specific targeting of ion channels, combined with in vivo tetrode recordings, to determine how channel dynamics influence the neural representation of space in the behaving animal. A second, parallel line of research, utilizes a combination of in vivo and in vitro methods to further parse out ionic expression patterns in entorhinal cortices and determine how gradients in ion channels develop. Ultimately, our work aims to understand the ontogenesis and relevance of medial entorhinal cortical topography in spatial memory and navigation.

  • Keren Haroush

    Keren Haroush

    Assistant Professor of Neurobiology

    Current Research and Scholarly Interests Our laboratory studies the mechanisms by which highly complex behaviors are mediated at the neuronal level, mainly focusing on the example of dynamic social interactions and the neural circuits that drive them. From dyadic interactions to group dynamics and collective decision making, the lab seeks a mechanistic understanding for the fundamental building blocks of societies, such as cooperation, empathy, fairness and reciprocity.

Footer Links:

Stanford Medicine Resources: