School of Medicine


Showing 21-40 of 54 Results

  • James Ford

    James Ford

    Professor of Medicine (Oncology) and of Genetics and, by courtesy, of Pediatrics

    Current Research and Scholarly Interests Mammalian DNA repair and DNA damage inducible responses; p53 tumor suppressor gene; transcription in nucleotide excision repair and mutagenesis; genetic determinants of cancer cell sensitivity to DNA damage; genetics of inherited cancer susceptibility syndromes and human GI malignancies; clinical cancer genetics of BRCA1 and BRCA2 breast cancer and mismatch repair deficient colon cancer.

  • Polly Fordyce

    Polly Fordyce

    Assistant Professor of Bioengineering and of Genetics

    Current Research and Scholarly Interests The Fordyce Lab is focused on developing new instrumentation and assays for making quantitative, systems-scale biophysical measurements of molecular interactions. Current research in the lab is focused on three main platforms: (1) arrays of valved reaction chambers for high-throughput protein expression and characterization, (2) spectrally encoded beads for multiplexed bioassays, and (3) sortable droplets and microwells for single-cell assays.

  • Uta Francke

    Uta Francke

    Professor of Genetics and of Pediatrics, Emerita

    Current Research and Scholarly Interests Functional consequences and pathogenetic mechanisms of mutations and microdeletions in human neurogenetic syndromes and mouse models. Integration of genomic information into medical care.

  • Judith Frydman

    Judith Frydman

    Donald Kennedy Chair in the School of Humanities and Sciences and Professor of Genetics

    Current Research and Scholarly Interests The long term goal of our research is to understand how proteins fold in living cells. My lab uses a multidisciplinary approach to address fundamental questions about molecular chaperones, protein folding and degradation. In addition to basic mechanistic principles, we aim to define how impairment of cellular folding and quality control are linked to disease, including cancer and neurodegenerative diseases and examine whether reengineering chaperone networks can provide therapeutic strategies.

  • Margaret T. Fuller

    Margaret T. Fuller

    Reed-Hodgson Professor in Human Biology and Professor of Genetics and of Obstetrics/Gynecology (Reproductive and Stem Cell Biology)

    Current Research and Scholarly Interests Regulation of self-renewal, proliferation and differentiation in adult stem cell lineages. Developmental tumor suppressor mechanisms and regulation of the switch from proliferation to differentiation. Cell type specific transcription machinery and regulation of cell differentiation. Developmental regulation of cell cycle progression during male meiosis.

  • Aaron D. Gitler

    Aaron D. Gitler

    The Stanford Medicine Basic Science Professor

    Current Research and Scholarly Interests We investigate the mechanisms of human neurodegenerative diseases, including Alzheimer disease, Parkinson disease, and ALS. We don't limit ourselves to one model system or experimental approach. We start with yeast, perform genetic and chemical screens, and then move to other model systems (e.g. mammalian tissue culture, mouse, fly) and even work with human patient samples (tissue sections, patient-derived cells, including iPS cells) and next generation sequencing approaches.

  • Anna L Gloyn

    Anna L Gloyn

    Professor of Pediatrics (Endocrinology) and, by courtesy, of Genetics

    Current Research and Scholarly Interests Anna's current research projects are focused on the translation of genetic association signals for type 2 diabetes and glycaemic traits into cellular and molecular mechanisms for beta-cell dysfunction and diabetes. Her group uses a variety of complementary approaches, including human genetics, functional genomics, physiology and islet-biology to dissect out the molecular mechanisms driving disease pathogenesis.

  • Henry T. (Hank) Greely

    Henry T. (Hank) Greely

    Deane F. and Kate Edelman Johnson Professor of Law and, Professor, by courtesy, of Genetics

    Current Research and Scholarly Interests Since 1992 my work has concentrated on ethical, legal, and social issues in the biosciences. I am particularly active on issues arising from neuroscience, human genetics, and stem cell research, with cross-cutting interests in human research protections, human biological enhancement, and the future of human reproduction.

  • William Greenleaf

    William Greenleaf

    Associate Professor of Genetics and, by courtesy, of Applied Physics

    Current Research and Scholarly Interests Our lab focuses on developing methods to probe both the structure and function of molecules encoded by the genome, as well as the physical compaction and folding of the genome itself. Our efforts are split between building new tools to leverage the power of high-throughput sequencing technologies and cutting-edge optical microscopies, and bringing these technologies to bear against basic biological questions by linking DNA sequence, structure, and function.

  • Leonore A. Herzenberg

    Leonore A. Herzenberg

    Department of Genetics Professor

    Current Research and Scholarly Interests B-cell lineage development and function; IgH rearrangement and repertoire analysis; HSC and lymphoid stem cells and lineages in mouse and man; T cell regulation of antibody responses; glutathione regulation of lymphoid and myeloid subst functions; development of advanced methods and software for Fluorescence-Activated Cell Sorting (FACS) and related analyses.

  • Mark A. Kay, M.D., Ph.D.

    Mark A. Kay, M.D., Ph.D.

    Dennis Farrey Family Professor in Pediatrics, and Professor of Genetics

    Current Research and Scholarly Interests Mark A. Kay, M.D., Ph.D. Director of the Program in Human Gene Therapy and Professor in the Departments of Pediatrics and Genetics. Respected worldwide for his work in gene therapy for hemophilia, Dr. Kay and his laboratory focus on establishing the scientific principles and developing the technologies needed for achieving persistent and therapeutic levels of gene expression in vivo. The major disease models are hemophilia, hepatitis C, and hepatitis B viral infections.

  • Karla Kirkegaard

    Karla Kirkegaard

    Violetta L. Horton Research Professor and Professor of Microbiology and Immunology

    Current Research and Scholarly Interests The biochemistry of RNA-dependent RNA polymerase function, the cell biology of the membrane rearrangements induced by positive-strand RNA virus infection of human cells, and the genetics of RNA viruses, which, with their high error rates, live at the brink of error catastrophe, are investigated in the Kirkegaard laboratory.

  • Anshul Kundaje

    Anshul Kundaje

    Assistant Professor of Genetics and of Computer Science

    Current Research and Scholarly Interests We develop statistical and machine learning frameworks to learn predictive, dynamic and causal models of gene regulation from heterogeneous functional genomics data.

  • Jin Billy Li

    Jin Billy Li

    Associate Professor of Genetics

    Current Research and Scholarly Interests The Li Lab is primarily interested in RNA editing mediated by ADAR enzymes. We co-discovered that the major function of RNA editing is to label endogenous dsRNAs as "self" to avoid being recognized as "non-self" by MDA5, a host innate immune dsRNA sensor, leading us to pursue therapeutic applications in cancer, autoimmune diseases, and viral infection. The other major direction of the lab is to develop technologies to harness endogenous ADAR enzymes for site-specific transcriptome engineering.

  • Joseph (Joe) Lipsick

    Joseph (Joe) Lipsick

    Professor of Pathology, of Genetics and, by courtesy, of Biology

    Current Research and Scholarly Interests Function and evolution of the Myb oncogene family; function and evolution of E2F transcriptional regulators and RB tumor suppressors; epigenetic regulation of chromatin and chromosomes; cancer genetics.

  • Stephen B. Montgomery

    Stephen B. Montgomery

    Associate Professor of Pathology, and of Genetics

    Current Research and Scholarly Interests We focus on understanding the effects of genome variation on cellular phenotypes and cellular modeling of disease through genomic approaches such as next generation RNA sequencing in combination with developing and utilizing state-of-the-art bioinformatics and statistical genetics approaches. See our website at http://montgomerylab.stanford.edu/

  • Kelly E. Ormond, MS, CGC

    Kelly E. Ormond, MS, CGC

    Professor (Teaching) of Genetics

    Current Research and Scholarly Interests While I spend half my time co-directing the MS in Human Genetics and Genetic Counseling program, my research focuses on the intersection between genetics and ethics, particularly around the translation of new genetic technologies (such as genome sequencing, non-invasive prenatal diagnosis and gene editing) into clinical practice. I am especially interested in patient decision making, consent and disclosure of genetic test results, and the interface between genetics and disability.

  • John R. Pringle

    John R. Pringle

    Professor of Genetics

    Current Research and Scholarly Interests Much of our research exploits the power of yeast as an experimentally tractable model eukaryote to investigate fundamental problems in cell and developmental biology such as the mechanisms of cell polarization and cytokinesis. In another project, we are developing the small sea anemone Aiptasia as a model system for study of the molecular and cellular biology of dinoflagellate-cnidarian symbiosis, which is critical for the survival of most corals but still very poorly understood.

Footer Links:

Stanford Medicine Resources: