School of Medicine


Showing 1-50 of 52 Results

  • Monther Abu-Remaileh

    Monther Abu-Remaileh

    Assistant Professor of Chemical Engineering and, by courtesy, of Genetics

    Bio The Abu-Remaileh Lab is interested in identifying novel pathways that enable cellular and organismal adaptation to metabolic stress and changes in environmental conditions. We also study how these pathways go awry in human diseases such as cancer, neurodegeneration and metabolic syndrome, in order to engineer new therapeutic modalities.

    To address these questions, our lab uses a multidisciplinary approach to study the biochemical functions of the lysosome in vitro and in vivo. Lysosomes are membrane-bound compartments that degrade macromolecules and clear damaged organelles to enable cellular adaptation to various metabolic states. Lysosomal function is critical for organismal homeostasis?mutations in genes encoding lysosomal proteins cause severe human disorders known as lysosomal storage diseases, and lysosome dysfunction is implicated in age-associated diseases including cancer, neurodegeneration and metabolic syndrome.

    By developing novel tools and harnessing the power of metabolomics, proteomics and functional genomics, our lab will define 1) how the lysosome communicates with other cellular compartments to fulfill the metabolic demands of the cell under various metabolic states, 2) and how its dysfunction leads to rare and common human diseases. Using insights from our research, we will engineer novel therapies to modulate the pathways that govern human disease.

  • Russ B. Altman

    Russ B. Altman

    Kenneth Fong Professor and Professor of Bioengineering, of Genetics, of Medicine (General Medical Discipline), of Biomedical Data Science and, by courtesy, of Computer Science

    Current Research and Scholarly Interests I refer you to my web page for detailed list of interests, projects and publications. In addition to pressing the link here, you can search "Russ Altman" on http://www.google.com/

  • Euan A. Ashley

    Euan A. Ashley

    Associate Dean, School of Medicine, Professor of Medicine (Cardiovascular), of Genetics, of Biomedical Data Science and, by courtesy, of Pathology at the Stanford University Medical Center

    Current Research and Scholarly Interests The Ashley lab is focused on precision medicine. We develop methods for the interpretation of whole genome sequencing data to improve the diagnosis of genetic disease and to personalize the practice of medicine. At the wet bench, we take advantage of cell systems, transgenic models and microsurgical models of disease to prove causality in biological pathways and find targets for therapeutic development.

  • Laura Attardi

    Laura Attardi

    Professor of Radiation Oncology (Radiation and Cancer Biology) and of Genetics

    Current Research and Scholarly Interests Our research is aimed at defining the pathways of p53-mediated apoptosis and tumor suppression, using a combination of biochemical, cell biological, and mouse genetic approaches. Our strategy is to start by generating hypotheses about p53 mechanisms of action using primary mouse embryo fibroblasts (MEFs), and then to test them using gene targeting technology in the mouse.

  • Julie Baker

    Julie Baker

    Professor of Genetics

    Current Research and Scholarly Interests Our laboratory is focused on identifying proteins based upon their ability to alter a variety of cell fate decisions - including mesodermal, endodermal, neural, endothelial, and somitic - within the vertebrate embryo.

  • Maria Barna

    Maria Barna

    Assistant Professor of Genetics and of Developmental Biology

    Current Research and Scholarly Interests Our lab studies how intricate control of gene expression and cell signaling is regulated on a minute-by-minute basis to give rise to the remarkable diversity of cell types and tissue morphology that form the living blueprints of developing organisms. Work in the Barna lab is presently split into two main research efforts. The first is investigating ribosome-mediated control of gene expression genome-wide in space and time during cellular differentiation and organismal development. This research is opening a new field of study in which we apply sophisticated mass spectrometry, computational biology, genomics, and developmental genetics, to characterize a ribosome code to gene expression. Our research has shown that not all of the millions of ribosomes within a cell are the same and that ribosome heterogeneity can diversify how genomes are translated into proteomes. In particular, we seek to address whether fundamental aspects of gene regulation are controlled by ribosomes harboring a unique activity or composition that are tuned to translating specific transcripts by virtue of RNA regulatory elements embedded within their 5?UTRs. The second research effort is centered on employing state-of-the-art live cell imaging to visualize cell signaling and cellular control of organogenesis. This research has led to the realization of a novel means of cell-cell communication dependent on a dense network of actin-based cellular extension within developing organs that interconnect and facilitate the precise transmission of molecular information between cells. We apply and create bioengineering tools to manipulate such cellular interactions and signaling in-vivo.

  • Greg Barsh

    Greg Barsh

    Professor of Genetics and of Pediatrics, Emeritus

    Current Research and Scholarly Interests Genetics of color variation

  • Michael Bassik

    Michael Bassik

    Assistant Professor of Genetics

    Current Research and Scholarly Interests My laboratory is focused on (1) the development of new technologies for high-throughput functional genomics using the CRISPR/Cas9 system, and (2) application of these tools to study the cellular response to drugs and endocytic pathogens (such as bacteria, viruses, and protein toxins). Fascinating in themselves, these pathogens also help illuminate basic cell biology. A complementary interest is in the identification of new drug targets and combinations to combat cancer and neurodegeneration.

  • Jon Bernstein

    Jon Bernstein

    Associate Professor of Pediatrics (Genetics) at the Lucile Salter Packard Children's Hospital and, by courtesy, of Genetics

    Current Research and Scholarly Interests My interests include the genetics of autism and other developmental disorders. In collaboration with colleagues at Stanford, I am working to develop induced pluripotent stem cell (iPSC) models of genetic disorders associated with developmental disability. I am also engaged in the application of new technologies (Whole genome sequencing, Multi-omics profiling) for the diagnosis of developmental disorders.

  • Ami Bhatt

    Ami Bhatt

    Assistant Professor of Medicine (Hematology) and of Genetics

    Current Research and Scholarly Interests The Bhatt lab is exploring how the microbiota is intertwined with states of health and disease. We apply the most modern genetic tools in an effort to deconvolute the mechanism of human diseases.

  • Anne Brunet

    Anne Brunet

    Michele and Timothy Barakett Endowed Professor

    Current Research and Scholarly Interests Our lab studies the molecular basis of longevity. We are interested in the mechanism of action of known longevity genes, including FOXO and SIRT, in the mammalian nervous system. We are particularly interested in the role of these longevity genes in neural stem cells. We are also discovering novel genes and processes involved in aging using two short-lived model systems, the invertebrate C. elegans and an extremely short-lived vertebrate, the African killifish N. furzeri.

  • Michele Calos

    Michele Calos

    Professor of Genetics, Emerita

    Current Research and Scholarly Interests My lab is developing innovative gene and stem cell therapies for genetic diseases, with a focus on gene therapy and regenerative medicine.

    We have created novel methods for inserting therapeutic genes into the chromosomes at specific places by using homologous recombination and recombinase enzymes.

    We are working on 3 forms of muscular dystrophy.

    We created induced pluripotent stem cells from patient fibroblasts, added therapeutic genes, differentiated, and engrafted the cells.

  • MaryAnn Campion

    MaryAnn Campion

    Clinical Associate Professor, Genetics

    Current Research and Scholarly Interests My research has focused on faculty development in academic medicine and the translation of genomics into public health.

  • Mike Cherry

    Mike Cherry

    Professor (Research) of Genetics

    Current Research and Scholarly Interests My research involves identifying, validating and integrating scientific facts into encyclopedic databases essential for research and scientific education. Published results of scientific experimentation are a foundation of our understanding of the natural world and provide motivation for new experiments. The combination of in-depth understanding reported in the literature with computational analyses is an essential ingredient of modern biological research.

  • Stanley N. Cohen, MD

    Stanley N. Cohen, MD

    Kwoh-Ting Li Professor in the School of Medicine, Professor of Genetics and of Medicine

    Current Research and Scholarly Interests We study mechanisms that affect the expression and decay of normal and abnormal mRNAs, and also RNA-related mechanisms that regulate microbial antibiotic resistance. A small bioinformatics team within our lab has developed knowledge based systems to aid in investigations of genes.

  • Le Cong

    Le Cong

    Assistant Professor of Pathology (Pathology Research) and of Genetics

    Bio Dr. Cong is leading a group in the Department of Pathology and Genetics at Stanford School of Medicine to pursue novel technology for scalable genome editing and single-cell genomics, and accompanying computational approaches inspired by data science. His group has a focus on studying immunology in the context of cancer and neuroscience.

    He obtained his BS with highest honor from Tsinghua University studying Electronic Engineering and then Biology, his Ph.D. from Harvard Medical School co-advised by Drs. Feng Zhang and George Church. He completed doctoral work primarily in Dr. Feng Zhang?s laboratory, where he published seminal studies on harnessing CRISPR/Cas9 for gene editing, including the most highly-cited paper in CRISPR field, with cumulative citation over 15,000 times. He has obtained over 20 issued patents as co-inventor, and his work led to one of the first FDA-approved clinical trials employing viral delivery of CRISPR/Cas9 for in vivo gene therapy. His later work applied single-cell RNA-seq to cancer drug discovery under Dr. Aviv Regev at the Broad Institute with Drs. Tyler Jacks and Vijay Kuchroo.

    Dr. Cong was a Howard Hughes Medical Institute (HHMI) International Fellow, a Cancer Research Institute (CRI) Irvington Fellow, and was selected as Forbes 30 Under 30 Asia list of young innovators, MIT TechReview TR35 China, and 2019 ?Top 10 under 40? by GEN (Genetic Engineering & Biotechnology News).

  • Christina Curtis

    Christina Curtis

    Assistant Professor of Medicine (Oncology) and of Genetics

    Current Research and Scholarly Interests The Curtis laboratory is focused on the development and application of innovative experimental, computational, and analytical approaches to improve the diagnosis, treatment, and early detection of cancer.

  • Ronald W. Davis

    Ronald W. Davis

    Professor of Biochemistry and of Genetics

    Current Research and Scholarly Interests We are using Saccharomyces cerevisiae and Human to conduct whole genome analysis projects. The yeast genome sequence has approximately 6,000 genes. We have made a set of haploid and diploid strains (21,000) containing a complete deletion of each gene. In order to facilitate whole genome analysis each deletion is molecularly tagged with a unique 20-mer DNA sequence. This sequence acts as a molecular bar code and makes it easy to identify the presence of each deletion.

  • Andrew Fire

    Andrew Fire

    George D. Smith Professor in Molecular and Genetic Medicine and Professor of Pathology and of Genetics

    Current Research and Scholarly Interests We study natural cellular mechanisms for adapting to genetic change. These include systems activated during normal development and those for detecting and responding to foreign or unwanted genetic activity. Underlying these studies are questions of how a cells can distinguish information as "self" versus "nonself" or "wanted" versus "unwanted".

  • James Ford

    James Ford

    Professor of Medicine (Oncology) and of Genetics and, by courtesy, of Pediatrics

    Current Research and Scholarly Interests Mammalian DNA repair and DNA damage inducible responses; p53 tumor suppressor gene; transcription in nucleotide excision repair and mutagenesis; genetic determinants of cancer cell sensitivity to DNA damage; genetics of inherited cancer susceptibility syndromes and human GI malignancies; clinical cancer genetics of BRCA1 and BRCA2 breast cancer and mismatch repair deficient colon cancer.

  • Polly Fordyce

    Polly Fordyce

    Assistant Professor of Bioengineering and of Genetics

    Current Research and Scholarly Interests The Fordyce Lab is focused on developing new instrumentation and assays for making quantitative, systems-scale biophysical measurements of molecular interactions. Current research in the lab is focused on two main areas: using microfluidic tools we have already developed to build ground-up quantitative models of how gene expression is regulated, and developing new tools to explore protein-protein interactions.

  • Uta Francke

    Uta Francke

    Professor of Genetics and of Pediatrics, Emerita

    Current Research and Scholarly Interests Functional consequences and pathogenetic mechanisms of mutations and microdeletions in human neurogenetic syndromes and mouse models. Integration of genomic information into medical care.

  • Judith Frydman

    Judith Frydman

    Donald Kennedy Chair in the School of Humanities and Sciences and Professor of Genetics

    Current Research and Scholarly Interests The long term goal of our research is to understand how proteins fold in living cells. My lab uses a multidisciplinary approach to address fundamental questions about molecular chaperones, protein folding and degradation. In addition to basic mechanistic principles, we aim to define how impairment of cellular folding and quality control are linked to disease, including cancer and neurodegenerative diseases and examine whether reengineering chaperone networks can provide therapeutic strategies.

  • Margaret T. Fuller

    Margaret T. Fuller

    Reed-Hodgson Professor in Human Biology and Professor of Genetics and of Obstetrics/Gynecology (Reproductive and Stem Cell Biology)

    Current Research and Scholarly Interests Regulation of self-renewal, proliferation and differentiation in adult stem cell lineages. Developmental tumor suppressor mechanisms and regulation of the switch from proliferation to differentiation. Cell type specific transcription machinery and regulation of cell differentiation. Developmental regulation of cell cycle progression during male meiosis.

  • Aaron D. Gitler

    Aaron D. Gitler

    The Stanford Medicine Basic Science Professor

    Current Research and Scholarly Interests We investigate the mechanisms of human neurodegenerative diseases, including Alzheimer disease, Parkinson disease, and ALS. We don't limit ourselves to one model system or experimental approach. We start with yeast, perform genetic and chemical screens, and then move to other model systems (e.g. mammalian tissue culture, mouse, fly) and even work with human patient samples (tissue sections, patient-derived cells, including iPS cells) and next generation sequencing approaches.

  • Henry T. (Hank) Greely

    Henry T. (Hank) Greely

    Deane F. and Kate Edelman Johnson Professor of Law and, Professor, by courtesy, of Genetics

    Current Research and Scholarly Interests Since 1992 my work has concentrated on ethical, legal, and social issues in the biosciences. I am particularly active on issues arising from neuroscience, human genetics, and stem cell research, with cross-cutting interests in human research protections, human biological enhancement, and the future of human reproduction.

  • William Greenleaf

    William Greenleaf

    Associate Professor of Genetics and, by courtesy, of Applied Physics

    Current Research and Scholarly Interests Our lab focuses on developing methods to probe both the structure and function of molecules encoded by the genome, as well as the physical compaction and folding of the genome itself. Our efforts are split between building new tools to leverage the power of high-throughput sequencing technologies and cutting-edge optical microscopies, and bringing these technologies to bear against basic biological questions by linking DNA sequence, structure, and function.

  • Leonore A. Herzenberg

    Leonore A. Herzenberg

    Department of Genetics Professor

    Current Research and Scholarly Interests B-cell lineage development and function; IgH rearrangement and repertoire analysis; HSC and lymphoid stem cells and lineages in mouse and man; T cell regulation of antibody responses; glutathione regulation of lymphoid and myeloid subst functions; development of advanced methods and software for Fluorescence-Activated Cell Sorting (FACS) and related analyses.

  • Mark A. Kay, M.D., Ph.D.

    Mark A. Kay, M.D., Ph.D.

    Dennis Farrey Family Professor in Pediatrics, and Professor of Genetics

    Current Research and Scholarly Interests Mark A. Kay, M.D., Ph.D. Director of the Program in Human Gene Therapy and Professor in the Departments of Pediatrics and Genetics. Respected worldwide for his work in gene therapy for hemophilia, Dr. Kay and his laboratory focus on establishing the scientific principles and developing the technologies needed for achieving persistent and therapeutic levels of gene expression in vivo. The major disease models are hemophilia, hepatitis C, and hepatitis B viral infections.

  • Karla Kirkegaard

    Karla Kirkegaard

    Violetta L. Horton Research Professor and Professor of Microbiology and Immunology

    Current Research and Scholarly Interests The biochemistry of RNA-dependent RNA polymerase function, the cell biology of the membrane rearrangements induced by positive-strand RNA virus infection of human cells, and the genetics of RNA viruses, which, with their high error rates, live at the brink of error catastrophe, are investigated in the Kirkegaard laboratory.

  • Anshul Kundaje

    Anshul Kundaje

    Assistant Professor of Genetics and of Computer Science

    Current Research and Scholarly Interests We develop statistical and machine learning frameworks to learn predictive, dynamic and causal models of gene regulation from heterogeneous functional genomics data.

  • Jin Billy Li

    Jin Billy Li

    Associate Professor of Genetics

    Current Research and Scholarly Interests RNA editing: identification, regulation, and function

  • Joseph (Joe) Lipsick

    Joseph (Joe) Lipsick

    Professor of Pathology, of Genetics and, by courtesy, of Biology

    Current Research and Scholarly Interests Function and evolution of the Myb oncogene family; function and evolution of E2F transcriptional regulators and RB tumor suppressors; epigenetic regulation of chromatin and chromosomes; cancer genetics.

  • Stephen B. Montgomery

    Stephen B. Montgomery

    Associate Professor of Pathology, and of Genetics

    Current Research and Scholarly Interests We focus on understanding the effects of genome variation on cellular phenotypes and cellular modeling of disease through genomic approaches such as next generation RNA sequencing in combination with developing and utilizing state-of-the-art bioinformatics and statistical genetics approaches. See our website at http://montgomerylab.stanford.edu/

  • Kelly E. Ormond, MS, CGC

    Kelly E. Ormond, MS, CGC

    Professor (Teaching) of Genetics

    Current Research and Scholarly Interests While I spend half my time co-directing the MS in Human Genetics and Genetic Counseling program, my research focuses on the intersection between genetics and ethics, particularly around the translation of new genetic technologies (such as genome sequencing, non-invasive prenatal diagnosis and gene editing) into clinical practice. I am especially interested in patient decision making, consent and disclosure of genetic test results, and the interface between genetics and disability.

  • John R. Pringle

    John R. Pringle

    Professor of Genetics

    Current Research and Scholarly Interests Much of our research exploits the power of yeast as an experimentally tractable model eukaryote to investigate fundamental problems in cell and developmental biology such as the mechanisms of cell polarization and cytokinesis. In another project, we are developing the small sea anemone Aiptasia as a model system for study of the molecular and cellular biology of dinoflagellate-cnidarian symbiosis, which is critical for the survival of most corals but still very poorly understood.

  • Jonathan Pritchard

    Jonathan Pritchard

    Professor of Genetics and of Biology

    Current Research and Scholarly Interests We are interested in a broad range of problems at the interface of genomics and evolutionary biology. One current focus of the lab is in understanding how genetic variation impacts gene regulation and complex traits. We also have long-term interests in using genetic data to learn about population structure, history and adaptation, especially in humans.

    FOR UP-TO-DATE DETAILS ON MY LAB AND RESEARCH, PLEASE SEE: http://pritchardlab.stanford.edu

  • Julien Sage

    Julien Sage

    Professor of Pediatrics (Hematology/Oncology) and of Genetics

    Current Research and Scholarly Interests We investigate the mechanisms by which normal cells become tumor cells, and we combine genetics, genomics, and proteomics approaches to investigate the differences between the proliferative response in response to injury and the hyperproliferative phenotype of cancer cells and to identify novel therapeutic targets in cancer cells.

  • Gavin Sherlock

    Gavin Sherlock

    Associate Professor of Genetics

    Current Research and Scholarly Interests Evolution and the adaptive landscape using yeast as a model; Defining yeast transcriptomes; chromosomal evolution in hybrid yeast species

  • Arend Sidow

    Arend Sidow

    Professor of Pathology and of Genetics

    Current Research and Scholarly Interests We have a highly collaborative research program in the evolutionary genomics of cancer. We apply well-established principles of phylogenetics to cancer evolution on the basis of whole genome sequencing and functional genomics data of multiple tumor samples from the same patient. Introductions to our work and the concepts we apply are best found in the Newburger et al paper in Genome Research and the Sidow and Spies review in TIGS.

    More information can be found here: http://www.sidowlab.org

  • Michael Snyder

    Michael Snyder

    Stanford W. Ascherman, MD, FACS, Professor in Genetics

    Current Research and Scholarly Interests Our laboratory use different omics approaches to study a) regulatory networks, b) intra- and inter-species variation which differs primarily at the level of regulatory information c) human health and disease. For the later we have established integrated Personal Omics Profiling (iPOP), an analysis that combines longitudinal analyses of genomic, transcriptomic, proteomic, metabolomic, DNA methylation, microbiome and autoantibody profiles to monitor healthy and disease states

  • Tim Stearns

    Tim Stearns

    Frank Lee and Carol Hall Professor and Professor of Genetics

    Current Research and Scholarly Interests We use the tools of genetics, microscopy, and biochemistry to understand fundamental questions of cell biology: How are cells organized by the cytoskeleton? How do the centrosome and cilium control cell control cell signaling? How is cell division coordinated with duplication of the centrosome, and what goes wrong in cancer cells defective in this coordination?

  • Lars Steinmetz

    Lars Steinmetz

    Professor of Genetics

    Current Research and Scholarly Interests We apply diverse genomic approaches to understand how genetic variation affects health and disease by: 1) functional and mechanistic analyses of gene regulation, 2) studies of meiotic recombination and inheritance, 3) analyses of genetic and environmental interactions, and 4) characterization of diseases in human cells and model organisms. We integrate wet lab and computational genomic, transcriptomic, proteomic and metabolic approaches, and develop technologies to enable personalized medicine.

  • Hua Tang

    Hua Tang

    Professor of Genetics and, by courtesy, of Statistics

    Current Research and Scholarly Interests Develop statistical and computational methods for population genomics analyses; modeling human evolutionary history; genetic association studies in admixed populations.

  • Alice Ting

    Alice Ting

    Professor of Genetics, of Biology and, by courtesy, of Chemistry

    Current Research and Scholarly Interests We develop chemogenetic and optogenetic technologies for probing and manipulating protein networks, cellular RNA, and the function of mitochondria and the mammalian brain. Our technologies draw from enzyme engineering, directed evolution, chemical biology, organic synthesis, high-resolution microscopy, genetics, and computational analysis.

  • Alexander Eckehart Urban

    Alexander Eckehart Urban

    Assistant Professor of Psychiatry and Behavioral Sciences (Major Laboratories and Clinical Translational Neurosciences Incubator) and of Genetics

    Current Research and Scholarly Interests Complex behavioral and neuropsychiatric phenotypes often have a strong genetic component. This genetic component is often extremely complex and difficult to dissect. The current revolution in genome technology means that we can avail ourselves to tools that make it possible for the first time to begin understanding the complex genetic and epigenetic interactions at the basis of the human mind.

  • Anne Villeneuve

    Anne Villeneuve

    Professor of Developmental Biology and of Genetics

    Current Research and Scholarly Interests Mechanisms underlying homologous chromosome pairing, DNA recombination and chromosome remodeling during meiosis, using the nematode Caenorhabditis elegans as an experimental system. High-resolution 3-D imaging of dynamic reorganization of chromosome architecture. Role of protease inhibitors in regulating sperm activation.

Footer Links:

Stanford Medicine Resources: