School of Medicine


Showing 21-24 of 24 Results

  • Kyle Loh

    Kyle Loh

    Assistant Professor of Developmental Biology (Stem Cell)

    Current Research and Scholarly Interests We have developed a strategy to generate fairly pure populations of various human tissue progenitors in a dish from embryonic stem cells (ESCs). We have delineated the sequential lineage steps through which ESCs diversify into various tissues, and in so doing, developed methods to exclusively induce certain fates at the expense of others. The resultant pure populations of tissue progenitors are the fundamental building blocks for regenerative medicine.

  • Jonathan Z. Long

    Jonathan Z. Long

    Assistant Professor of Pathology

    Current Research and Scholarly Interests We study the circulating signals that regulate mammalian energy homeostasis. Many classical examples include endocrine hormones such as insulin, steroids, and catecholamines. Nevertheless, recent large-scale data now suggest many more remain to be discovered. What are the identities of these molecules? What energy stressors do they respond to? Where are they made? What cell types or tissues do they act on? To answer these questions, we use chemical biology and mass spectrometry-based technologies as discovery tools. We combine these tools with classical biochemical and genetic techniques in cellular and animal models. Our goal is to discover new metabolite and polypeptide signaling pathways that regulate organismal energy metabolism. We anticipate that our approach will uncover fundamental mechanisms that control mammalian energy homeostasis. In the long term, we hope to translate our discoveries into therapeutic opportunities that matter for metabolic and other age-associated chronic diseases.

  • Michael Longaker

    Michael Longaker

    Deane P. and Louise Mitchell Professor in the School of Medicine and Professor, by courtesy, of Materials Science and Engineering

    Current Research and Scholarly Interests We have six main areas of current interest: 1) Cranial Suture Developmental Biology, 2) Distraction Osteogenesis, 3) Fibroblast heterogeneity and fibrosis repair, 4) Scarless Fetal Wound Healing, 5) Skeletal Stem Cells, 6) Novel Gene and Stem Cell Therapeutic Approaches.

Footer Links:

Stanford Medicine Resources: