School of Medicine


Showing 1-8 of 8 Results

  • Christopher Gardner

    Christopher Gardner

    Rehnborg Farquhar Professor

    Current Research and Scholarly Interests The role of nutrition in individual and societal health, with particular interests in: plant-based diets, differential response to low-carb vs. low-fat weight loss diets by insulin resistance status, chronic disease prevention, randomized controlled trials, human nutrition, community based studies, Community Based Participatory Research, sustainable food movement (animal rights and welfare, global warming, human labor practices), stealth health, nutrition policy, nutrition guidelines

  • Andrew Gentles

    Andrew Gentles

    Assistant Professor (Research) of Medicine (Biomedical Informatics) and, by courtesy, of Biomedical Data Science

    Current Research and Scholarly Interests Computational systems biology of human disease. Particular focus on integration of high-throughput datasets with each other, and with phenotypic information and clinical outcomes.

  • Paul George, MD, PhD

    Paul George, MD, PhD

    Assistant Professor of Neurology and, by courtesy, of Neurosurgery at the Stanford University Medical Center

    Current Research and Scholarly Interests CONDUCTIVE POLYMER SCAFFOLDS FOR STEM CELL-ENHANCED STROKE RECOVERY:
    We focus on developing conductive polymers for stem cell applications. We have created a microfabricated, polymeric system that can continuously interact with its biological environment. This interactive polymer platform allows modifications of the recovery environment to determine essential repair mechanisms. Recent work studies the effect of electrical stimulation on neural stem cells seeded on the conductive scaffold and the pathways by which it enhances stroke recovery Further understanding the combined effect of electrical stimulation and stem cells in augmenting neural repair for clinical translational is a major focus of this research going forward.

    BIOPOLYMER SYSTEMS FOR NEURAL RECOVERY AND STEM CELL MODULATION:
    The George lab develops biomaterials to improve neural recovery in the peripheral and central nervous systems. By controlled release of drugs and molecules through biomaterials we can study the temporal effect of these neurotrophic factors on neural recovery and engineer drug delivery systems to enhance regenerative effects. By identifying the critical mechanisms for stroke and neural recovery, we are able to develop polymeric technologies for clinical translation in nerve regeneration and stroke recovery. Recent work utilizing these novel conductive polymers to differentiate stem cells for therapeutic and drug discovery applications.

    APPLYING ENGINEERING TECHNIQUES TO DETERMINE BIOMARKERS FOR STROKE DIAGNOSTICS:
    The ability to create diagnostic assays and techniques enables us to understand biological systems more completely and improve clinical management. Previous work utilized mass spectroscopy proteomics to find a simple serum biomarker for TIAs (a warning sign of stroke). Our study discovered a novel candidate marker, platelet basic protein. Current studies are underway to identify further candidate biomarkers using transcriptome analysis. More accurate diagnosis will allow for aggressive therapies to prevent subsequent strokes.

  • Olivier Gevaert

    Olivier Gevaert

    Assistant Professor of Medicine (Biomedical Informatics) and of Biomedical Data Science

    Current Research and Scholarly Interests My lab focuses on biomedical data fusion: the development of machine learning methods for biomedical decision support using multi-scale biomedical data. We primarily use methods based on regularized linear regression to accomplish this. We primarily focus on applications in oncology and neuroscience.

  • Mary Kane Goldstein

    Mary Kane Goldstein

    Professor of Medicine (Center for Primary Care and Outcomes Research) at the Palo Alto Veterans Affairs Health Care System

    Current Research and Scholarly Interests Health services research in primary care and geriatrics: developing, implementing, and evaluating methods for clinical quality improvement. Current work includes applying health information technology to quality improvement through clinical decision support (CDS) integrated with electronic health records; encoding clinical knowledge into computable formats in automated knowledge bases; natural language processing of free text in electronic health records; analyzing multiple comorbidities

  • Eric R. Gross

    Eric R. Gross

    Assistant Professor of Anesthesiology, Perioperative and Pain Medicine

    Current Research and Scholarly Interests A part of the laboratory studies organ injury and how common genetic variants may affect the response to injury caused by surgery; particularly aldehydes. Aldehyde accumulation can cause many post-operative complications that people experience during surgery- whether it be reperfusion injury, post-operative pain, cognitive dysfunction, or nausea. The other part of the lab studies the impact of e-cigarettes and alcohol, when coupled with genetics, on the cardiopulmonary system.

  • James Gross

    James Gross

    Professor of Psychology

    Current Research and Scholarly Interests I am interested in emotion and emotion regulation. My research employs behavioral, physiological, and brain measures to examine emotion-related personality processes and individual differences. My current interests include emotion coherence, specific emotion regulation strategies (reappraisal, suppression), automatic emotion regulation, and social anxiety.

  • Geoffrey Gurtner

    Geoffrey Gurtner

    Johnson & Johnson Professor of Surgery and Professor, by courtesy, of Bioengineering and of Materials Science and Engineering

    Current Research and Scholarly Interests Geoffrey Gurtner's Lab is interested in understanding the mecahnism of new blood vessel growth following injury and how pathways of tissue regeneration and fibrosis interact in wound healing.

Footer Links:

Home | Stanford Medicine

Latest information on COVID-19

Stanford Medicine is closely monitoring the COVID-19 pandemic. Get the latest news on COVID-19 testing, treatment, tracking data, and medical research.

Racism and discrimination are direct affronts to Stanford Medicine?s values. Read our leaders? pledge on racial equity.

A leader in the biomedical revolution, Stanford Medicine has a long tradition of leadership in pioneering research, creative teaching protocols and effective clinical therapies.

Analyzing a national cancer database, Stanford Medicine researchers find a bump in diagnoses at 65, suggesting that many wait for Medicare to kick in before they seek care.

Our scientists have launched dozens of research projects as part of the global response to COVID-19. Some aim to prevent, diagnose and treat the disease; others aim to understand how it spreads and how people?s immune systems respond to it.

A Stanford Medicine team offered guidance in crafting a COVID-19 response for the Oglala Lakota Nation.

Medical students recently learned where they would be heading for their residencies.

Sharon Hampton is focusing on patient equity as a nursing leader at Stanford Health Care. Getting to know patients and staff is key, she says.

Stanford Medicine Resources: