School of Medicine


Showing 1-10 of 559 Results

  • Oscar J. Abilez

    Oscar J. Abilez

    Instructor, Medicine - Cardiovascular Medicine

    Current Research and Scholarly Interests Bioengineering, biophysical control of cardiovascular development, pluripotent stem cell biology, optogenetics, electrophysiology, cell mechanics, directed cellular evolution, multiscale engineering, microfluidics, computational biology

  • Raag Airan

    Raag Airan

    Assistant Professor of Radiology (Neuroradiology) at the Stanford University Medical Center and, by courtesy, of Materials Science and Engineering and of Psychiatry and Behavioral Sciences

    Current Research and Scholarly Interests Our goal is to develop and clinically implement new technologies for high-precision and noninvasive intervention upon the nervous system. Every few millimeters of the brain is functionally distinct, and different parts of the brain may have counteracting responses to therapy. To better match our therapies to neuroscience, we develop techniques that allow intervention upon only the right part of the nervous system at the right time, using technologies like focused ultrasound and nanotechnology.

  • Steven R. Alexander, MD

    Steven R. Alexander, MD

    Professor of Pediatrics (Nephrology) at the Lucile Salter Packard Children's Hospital

    Current Research and Scholarly Interests Dialysis, kidney transplantation, continuous renal replacement therapy in pediatric patients; chronic kidney disease in pediatric patients.

  • Ash A. Alizadeh, MD/PhD

    Ash A. Alizadeh, MD/PhD

    Associate Professor of Medicine (Oncology)

    Current Research and Scholarly Interests My research is focused on attaining a better understanding of the initiation, maintenance, and progression of tumors, and their response to current therapies toward improving future treatment strategies. In this effort, I employ tools from functional genomics, computational biology, molecular genetics, and mouse models.

    Clinically, I specialize in the care of patients with lymphomas, working on translating our findings in prospective cancer clinical trials.

  • Russ B. Altman

    Russ B. Altman

    Kenneth Fong Professor and Professor of Bioengineering, of Genetics, of Medicine (General Medical Discipline), of Biomedical Data Science and, by courtesy, of Computer Science

    Current Research and Scholarly Interests I refer you to my web page for detailed list of interests, projects and publications. In addition to pressing the link here, you can search "Russ Altman" on http://www.google.com/

  • Cristina M. Alvira

    Cristina M. Alvira

    Associate Professor of Pediatrics (Critical Care) at the Stanford University Medical Center

    Current Research and Scholarly Interests The overall objective of the Alvira Laboratory is to elucidate the mechanisms that promote postnatal lung development and repair, by focusing on three main scientific goals: (i) identification of the signaling pathways that direct the transition between the saccular and alveolar stages of lung development; (ii) exploration of the interplay between postnatal vascular and alveolar development; and (iii) determination of developmentally regulated pathways that mediate lung repair after injury.

  • Manuel Amieva

    Manuel Amieva

    Associate Professor of Pediatrics (Infectious Diseases) and of Microbiology and Immunology

    Current Research and Scholarly Interests My laboratory studies how bacteria colonize our bodies for long periods of time, and how interactions between bacteria and the epithelial surfaces of the gastrointestinal tract and skin may lead to disease. Epithelial surfaces are the first barrier against infection, but they also where our bodies meet and co-evolve with the microbial world.. Several of our studies have focused on the epithelial junctions as a target for bacterial pathogens. The host epithelium uses its epithelial junctions to form a tight but dynamic barrier with an external surface that is inhospitable to microbial attachment, secretes anti-microbial compounds, and has a rapid rate of self-renewal. The balance in the microbe-epithelial relationship results in silent commensalism or symbiosis; an imbalance results in diseases ranging from acute bacterial invasive disease to chronic ulcers or carcinoma.

    Our laboratory has developed novel microscopy applications such as quantitative 3D confocal microscopy, electron microscopy, time-lapse imaging, microinjection and micromanipulation to visualize the interaction of pathogens with epithelial cells in culture and in animal and human tissues. Many of out studies focus on the gastric pathogen Helicobacter pylori, but we have also expanded our investigations to include the intestinal pathogens Listeria monocytogenes and Salmonella enterica, and the skin pathogen and colonizer Staphylococcus aureus. I believe that elucidating how microbes communicate with and alter our epithelial cells at a molecular level will be important for finding novel therapeutic targets to control mucosal colonization and prevent invasive disease.

    Using this perspective, we have uncovered several novel concepts of how bacteria colonize and breach our epithelial surfaces. For example, we discovered that Helicobacter pylori target the intercellular junctions, and in particular that the virulence factor CagA affects junction assembly and cell polarity. This confers H. pylori the ability to extract nutrients and grow directly on the epithelial surface. We also found that these properties of CagA have consequences for cellular transformation of the epithelium. For instance, we showed that H. pylori affect the activity and state of epithelial stem cells in the stomach by colonizing the epithelial surface deep in the gastric glands. This gland-associated population is essential for pathological inflammation and hyperplasia in animal models, and confers significant colonization advantages to the bacteria. Our Listeria research uncovered a new mechanism and site where bacteria can breach the gastrointestinal epithelial barrier to invade. We found that Listeria find their receptor for invasion at sites of epithelial senescence, where the epithelial junctions undergo dynamic turnover. To study Salmonella and H. pylori we have developed a human organoid model to study their interactions with human gut epithelium in vitro. To study Staphylococcus aureus pathogenesis, we have developed methods to visualize infection at the scale of a single bacterial microcolony using an organoid culture system of human keratinocytes and fibroblasts that grow into a 3D skin-equivalent. We recently identified several proteins at the eptithelial junctions as host factors involved in the pathogenesis of one of Staphylococcus aureus major toxins.

Footer Links:

Stanford Medicine Resources: