Academic Appointments


2015-16 Courses


All Publications

  • Evaluation of on-board kV cone beam CT (CBCT)-based dose calculation PHYSICS IN MEDICINE AND BIOLOGY Yang, Y., Schreibmann, E., Li, T., Wang, C., Xing, L. 2007; 52 (3): 685-705


    On-board CBCT images are used to generate patient geometric models to assist patient setup. The image data can also, potentially, be used for dose reconstruction in combination with the fluence maps from treatment plan. Here we evaluate the achievable accuracy in using a kV CBCT for dose calculation. Relative electron density as a function of HU was obtained for both planning CT (pCT) and CBCT using a Catphan-600 calibration phantom. The CBCT calibration stability was monitored weekly for 8 consecutive weeks. A clinical treatment planning system was employed for pCT- and CBCT-based dose calculations and subsequent comparisons. Phantom and patient studies were carried out. In the former study, both Catphan-600 and pelvic phantoms were employed to evaluate the dosimetric performance of the full-fan and half-fan scanning modes. To evaluate the dosimetric influence of motion artefacts commonly seen in CBCT images, the Catphan-600 phantom was scanned with and without cyclic motion using the pCT and CBCT scanners. The doses computed based on the four sets of CT images (pCT and CBCT with/without motion) were compared quantitatively. The patient studies included a lung case and three prostate cases. The lung case was employed to further assess the adverse effect of intra-scan organ motion. Unlike the phantom study, the pCT of a patient is generally acquired at the time of simulation and the anatomy may be different from that of CBCT acquired at the time of treatment delivery because of organ deformation. To tackle the problem, we introduced a set of modified CBCT images (mCBCT) for each patient, which possesses the geometric information of the CBCT but the electronic density distribution mapped from the pCT with the help of a BSpline deformable image registration software. In the patient study, the dose computed with the mCBCT was used as a surrogate of the 'ground truth'. We found that the CBCT electron density calibration curve differs moderately from that of pCT. No significant fluctuation was observed in the calibration over the period of 8 weeks. For the static phantom, the doses computed based on pCT and CBCT agreed to within 1%. A notable difference in CBCT- and pCT-based dose distributions was found for the motion phantom due to the motion artefacts which appeared in the CBCT images (the maximum discrepancy was found to be approximately 3.0% in the high dose region). The motion artefacts-induced dosimetric inaccuracy was also observed in the lung patient study. For the prostate cases, the mCBCT- and CBCT-based dose calculations yielded very close results (<2%). Coupled with the phantom data, it is concluded that the CBCT can be employed directly for dose calculation for a disease site such as the prostate, where there is little motion artefact. In the prostate case study, we also noted a large discrepancy between the original treatment plan and the CBCT (or mCBCT)-based calculation, suggesting the importance of inter-fractional organ movement and the need for adaptive therapy to compensate for the anatomical changes in the future.

    View details for DOI 10.1088/0031-9155/52/3/011

    View details for Web of Science ID 000243684600011

    View details for PubMedID 17228114

  • Four-dimensional cone-beam computed tomography using an on-board imager MEDICAL PHYSICS Li, T., Xing, L., Munro, P., McGuinness, C., Chao, M., Yang, Y., Loo, B., Koong, A. 2006; 33 (10): 3825-3833


    On-board cone-beam computed tomography (CBCT) has recently become available to provide volumetric information of a patient in the treatment position, and holds promises for improved target localization and irradiation dose verification. The design of currently available on-board CBCT, however, is far from optimal. Its quality is adversely influenced by many factors, such as scatter, beam hardening, and intra-scanning organ motion. In this work we quantitatively study the influence of organ motion on CBCT imaging and investigate a strategy to acquire high quality phase-resolved [four-dimensional (4D)] CBCT images based on phase binning of the CBCT projection data. An efficient and robust method for binning CBCT data according to the patient's respiratory phase derived in the projection space was developed. The phase-binned projections were reconstructed using the conventional Feldkamp algorithm to yield 4D CBCT images. Both phantom and patient studies were carried out to validate the technique and to optimize the 4D CBCT data acquisition protocol. Several factors that are important to the clinical implementation of the technique, such as the image quality, scanning time, number of projections, and radiation dose, were analyzed for various scanning schemes. The general references drawn from this study are: (i) reliable phase binning of CBCT projections is accomplishable with the aid of external or internal marker and simple analysis of its trace in the projection space, and (ii) artifact-free 4D CBCT images can be obtained without increasing the patient radiation dose as compared to the current 3D CBCT scan.

    View details for DOI 10.1118/1.2349692

    View details for Web of Science ID 000241424100024

    View details for PubMedID 17089847

  • Overview of image-guided radiation therapy MEDICAL DOSIMETRY Xing, L., Thorndyke, B., Schreibmann, E., Yang, Y., Li, T., Kim, G., Luxton, G., Koong, A. 2006; 31 (2): 91-112


    Radiation therapy has gone through a series of revolutions in the last few decades and it is now possible to produce highly conformal radiation dose distribution by using techniques such as intensity-modulated radiation therapy (IMRT). The improved dose conformity and steep dose gradients have necessitated enhanced patient localization and beam targeting techniques for radiotherapy treatments. Components affecting the reproducibility of target position during and between subsequent fractions of radiation therapy include the displacement of internal organs between fractions and internal organ motion within a fraction. Image-guided radiation therapy (IGRT) uses advanced imaging technology to better define the tumor target and is the key to reducing and ultimately eliminating the uncertainties. The purpose of this article is to summarize recent advancements in IGRT and discussed various practical issues related to the implementation of the new imaging techniques available to radiation oncology community. We introduce various new IGRT concepts and approaches, and hope to provide the reader with a comprehensive understanding of the emerging clinical IGRT technologies. Some important research topics will also be addressed.

    View details for DOI 10.1016/j.meddos.2005.12.004

    View details for Web of Science ID 000237818000002

    View details for PubMedID 16690451

  • Model-based image reconstruction for four-dimensional PET MEDICAL PHYSICS Li, T., Thorndyke, B., Schreibmann, E., Yang, Y., Xing, L. 2006; 33 (5): 1288-1298


    Positron emission tonography (PET) is useful in diagnosis and radiation treatment planning for a variety of cancers. For patients with cancers in thoracic or upper abdominal region, the respiratory motion produces large distortions in the tumor shape and size, affecting the accuracy in both diagnosis and treatment. Four-dimensional (4D) (gated) PET aims to reduce the motion artifacts and to provide accurate measurement of the tumor volume and the tracer concentration. A major issue in 4D PET is the lack of statistics. Since the collected photons are divided into several frames in the 4D PET scan, the quality of each reconstructed frame degrades as the number of frames increases. The increased noise in each frame heavily degrades the quantitative accuracy of the PET imaging. In this work, we propose a method to enhance the performance of 4D PET by developing a new technique of 4D PET reconstruction with incorporation of an organ motion model derived from 4D-CT images. The method is based on the well-known maximum-likelihood expectation-maximization (ML-EM) algorithm. During the processes of forward- and backward-projection in the ML-EM iterations, all projection data acquired at different phases are combined together to update the emission map with the aid of deformable model, the statistics is therefore greatly improved. The proposed algorithm was first evaluated with computer simulations using a mathematical dynamic phantom. Experiment with a moving physical phantom was then carried out to demonstrate the accuracy of the proposed method and the increase of signal-to-noise ratio over three-dimensional PET. Finally, the 4D PET reconstruction was applied to a patient case.

    View details for DOI 10.1118/1.2192581

    View details for Web of Science ID 000237673600012

    View details for PubMedID 16752564

Footer Links:

Stanford Medicine Resources: