Bio

Stanford Advisors


Publications

All Publications


  • THE CANCER HYPOTHESIS OF PULMONARY ARTERIAL HYPERTENSION: THE NEXT TEN YEARS. American journal of physiology. Lung cellular and molecular physiology Condon, D., Agarwal, S., Chakraborty, A., de Jesus Perez, V. A. 2020

    View details for DOI 10.1152/ajplung.00057.2020

    View details for PubMedID 32186209

  • In Defense of the Nucleus: NUDT1 and Oxidative DNA Damage in Pulmonary Arterial Hypertension. American journal of respiratory and critical care medicine Agarwal, S., de Jesus Perez, V. A. 2020

    View details for DOI 10.1164/rccm.202009-3706ED

    View details for PubMedID 33095993

  • Mural Cell SDF1 Signaling is Associated with the Pathogenesis of Pulmonary Arterial Hypertension. American journal of respiratory cell and molecular biology Yuan, K., Liu, Y., Zhang, Y., Nathan, A., Tian, W., Yu, J., Sweatt, A. J., Condon, D., Chakraborty, A., Agarwal, S., Auer, N., Zhang, S., Wu, J. C., Zamanian, R. T., Nicolls, M. R., de Jesus Perez, V. A. 2020

    Abstract

    Pulmonary artery smooth muscle cells (PASMCs) and pericytes are NG2+ mural cells that provide structural support to pulmonary arteries and capillaries. In pulmonary arterial hypertension (PAH), both mural cell types contribute to PA muscularization but whether similar mechanisms are responsible for their behavior is unknown.RNA-Seq was used to compare the gene profile of pericytes and PASMCs from PAH and healthy lungs. NG2-Cre-ER mice were used to generate NG2-selective reporter mice (NG2tdT) for cell lineage identification and tamoxifen-inducible mice for NG2-selective SDF1 knockout (SDF1NG2-KO).Hierarchical clustering of RNA-seq data demonstrated that the genetic profile of PAH pericytes and PASMCs is highly similar. Cellular lineage staining studies on NG2tdT mice in chronic hypoxia showed that similar to PAH, tdT+ cells accumulate in muscularized microvessels and demonstrate significant upregulation of SDF1, a chemokine involved in chemotaxis and angiogenesis. Compared to controls, SDF1NG2-KO mice in chronic hypoxia had reduced muscularization and lower abundance of NG2+ cells around microvessels. SDF1 stimulation in healthy pericytes induced greater contractility and impaired their capacity to establish endothelial-pericyte communications. In contrast, SDF1 knockdown reduced PAH pericyte contractility and improved their capacity to associate with vascular tubes in co-culture.SDF1 is upregulated in NG2+ mural cells and is associated with PA muscularization. Targeting SDF1 could help prevent and/or reverse muscularization in PAH.

    View details for DOI 10.1165/rcmb.2019-0401OC

    View details for PubMedID 32084325

Footer Links:

Stanford Medicine Resources: