Bio

Bio


Stroke is the leading cause of disability in the United States, drastically disrupting the lives of stroke survivors and their caretakers. Unfortunately, because of tight therapeutic time requirements, the majority of stroke patients are not eligible for the current medicines or interventions. The George Lab's research focuses on improving stroke diagnostics as well as engineering new methods to enhance stroke recovery. Our lab's primary focus is applying novel bioengineering techniques to understand the mechanisms of neural recovery (primarily in stroke) and discovering methods to improve patient recovery. We use rodent models of stroke combined with biomaterial techniques, stem cell transplants, and microfabrication to achieve these aims and evaluate our methods with behavior testing and various imaging techniques. Our ultimate goal is to translate these findings into clinical trials to help stroke patients.

Clinical Focus


  • Neurology

Academic Appointments


Professional Education


  • Board Certification: Vascular Neurology, American Board of Psychiatry and Neurology (2014)
  • Fellowship:Stanford University School of Medicine (2013) CA
  • Residency:Stanford University School of Medicine (2012) CA
  • Board Certification: Neurology, American Board of Psychiatry and Neurology (2012)
  • Internship:Stanford University Medical Center (2009) CA
  • Medical Education:Harvard Medical School (2008) MA
  • PhD, Massachussetts Institute of Technology, Electrical and Medical Engineering (2005)
  • BSE, Tulane University of Louisiana (1999)

Research & Scholarship

Clinical Trials


  • Imaging Collaterals in Acute Stroke (iCAS) Recruiting

    Stroke is caused by a sudden blockage of a blood vessel that delivers blood to the brain. Unblocking the blood vessel with a blood clot removal device restores blood flow and if done quickly may prevent the disability that can be caused by a stroke. However, not all stroke patients benefit from having their blood vessel unblocked. The aim of this study is to determine if special brain imaging, called MRI, can be used to identify which stroke patients are most likely to benefit from attempts to unblock their blood vessel with a special blood clot removal device. In particular, we will assess in this trial whether a noncontrast MR imaging sequence, arterial spin labeling (ASL), can demonstrate the presence of collateral blood flow (compared with a gold standard of the angiogram) and whether it is useful to predict who will benefit from treatment.

    View full details

  • Transient Ischemic Attack (TIA) Triage and Evaluation of Stroke Risk Recruiting

    Transient ischemic attack (TIA) is a transient neurological deficit (speech disturbance, weakness?), caused by temporary occlusion of a brain vessel by a blood clot that leaves no lasting effect. TIA diagnosis can be challenging and an expert stroke evaluation combined with magnetic resonance imaging (MRI) could improve the diagnosis accuracy. The risk of a debilitating stroke can be as high as 5% during the first 72 hrs after TIA. TIA characteristics (duration, type of symptoms, age of the patient), the presence of a significant narrowing of the neck vessels responsible for the patient's symptoms (symptomatic stenosis), and an abnormal MRI are associated with an increased risk of stroke. An emergent evaluation and treatment of TIA patients by a stroke specialist could reduce the risk of stroke to 2%. Stanford has implemented an expedited triage pathway for TIA patients combining a clinical evaluation by a stroke neurologist, an acute MRI of the brain and the vessels and a sampling of biomarkers (Lp-PLA2). The investigators are investigating the yield of this unique approach to improve TIA diagnosis, prognosis and secondary stroke prevention. The objective of this prospective cohort study is to determine which factors will help the physician to confirm the diagnosis of TIA and to define the risk of stroke after a TIA.

    View full details

Teaching

Stanford Advisees


Publications

All Publications


  • Inter-rater agreement analysis of the Precise Diagnostic Score for suspected transient ischemic attack INTERNATIONAL JOURNAL OF STROKE Cereda, C. W., George, P. M., Inoue, M., Vora, N., Olivot, J., Schwartz, N., Lansberg, M. G., Kemp, S., Mlynash, M., Albers, G. W. 2016; 11 (1): 85-92

    Abstract

    No definitive criteria are available to confirm the diagnosis of transient ischemic attack. Inter-rater agreement between physicians regarding the diagnosis of transient ischemic attack is low, even among vascular neurologists. We developed the Precise Diagnostic Score, a diagnostic score that consists of discrete and well-defined clinical and imaging parameters, and investigated inter-rater agreement in patients with suspected transient ischemic attack.Fellowship-trained vascular neurologists, blinded to final diagnosis, independently reviewed retrospectively identical history, physical examination, routine diagnostic studies, and brain magnetic resonance imaging (diffusion and perfusion images) from consecutive patients with suspected transient ischemic attack. Each patient was rated using the 8-point Precise Diagnostic Score score, composed of a clinical score (0-4 points) and an imaging score (0-4 points). The composite Precise Diagnostic Score determines a Precise Diagnostic Score Likelihood of Brain Ischemia Scale: 0-1?=?unlikely, 2?=?possible, 3?=?probable, 4-8?=?very likely.Three raters reviewed data from 114 patients. Using Precise Diagnostic Score, all three raters scored a similar percentage of the clinical events as being "probable" or "very likely" caused by brain ischemia: 57, 55, and 58%. Agreement was high for both total Precise Diagnostic Score (intraclass correlation coefficient of 0.94) and for the Likelihood of Brain Ischemia Scale (agreement coefficient of 0.84).Compared with prior studies, inter-rater agreement for the diagnosis of transient brain ischemia appears substantially improved with the Precise Diagnostic Score scoring system. This score is the first to include specific criteria to assess the clinical relevance of diffusion-weighted imaging and perfusion lesions and supports the added value of magnetic resonance imaging for assessing patients with suspected transient ischemic attack.

    View details for DOI 10.1177/1747493015607507

    View details for Web of Science ID 000368703300021

    View details for PubMedID 26763024

  • Validation and comparison of imaging-based scores for prediction of early stroke risk after transient ischaemic attack: a pooled analysis of individual-patient data from cohort studies. The Lancet. Neurology Kelly, P. J., Albers, G. W., Chatzikonstantinou, A., De Marchis, G. M., Ferrari, J., George, P., Katan, M., Knoflach, M., Kim, J. S., Li, L., Lee, E. J., Olivot, J. M., Purroy, F., Raposo, N., Rothwell, P. M., Sharma, V. K., Song, B., Tsivgoulis, G., Walsh, C., Xu, Y., Merwick, A. 2016; 15 (12): 1238?47

    Abstract

    Identification of patients at highest risk of early stroke after transient ischaemic attack has been improved with imaging based scores. We aimed to compare the validity and prognostic utility of imaging-based stroke risk scores in patients after transient ischaemic attack.We did a pooled analysis of published and unpublished individual-patient data from 16 cohort studies of transient ischaemic attack done in Asia, Europe, and the USA, with early brain and vascular imaging and follow up. All patients were assessed by stroke specialists in hospital settings as inpatients, in emergency departments, or in transient ischaemic attack clinics. Inclusion criteria were stroke-specialist confirmed transient ischaemic attack, age of 18 years or older, and MRI done within 7 days of index transient ischaemic attack and before stroke recurrence. Multivariable logistic regression was done to analyse the predictive utility of abnormal diffusion-weighted MRI, carotid stenosis, and transient ischaemic attack within 1 week of index transient ischaemic attack (dual transient ischaemic attack) after adjusting for ABCD2 score. We compared the prognostic utility of the ABCD2, ABCD2-I, and ABCD3-I scores using discrimination, calibration, and risk reclassification.In 2176 patients from 16 cohort studies done between 2005 and 2015, after adjusting for ABCD2 score, positive diffusion-weighted imaging (odds ratio [OR] 3·8, 95% CI 2·1-7·0), dual transient ischaemic attack (OR 3·3, 95% CI 1·8-5·8), and ipsilateral carotid stenosis (OR 4·7, 95% CI 2·6-8·6) were associated with 7 day stroke after index transient ischaemic attack (p<0·001 for all). 7 day stroke risk increased with increasing ABCD2-I and ABCD3-I scores (both p<0·001). Discrimination to identify early stroke risk was improved for ABCD2-I versus ABCD2 (2 day c statistic 0·74 vs 0·64; p=0·006). However, discrimination was further improved by ABCD3-I compared with ABCD2 (2 day c statistic 0·84 vs 0·64; p<0·001) and ABCD2-I (c statistic 0·84 vs 0·74; p<0·001). Early stroke risk reclassification was improved by ABCD3-I compared with ABCD2-I score (clinical net reclassification improvement 33% at 2 days).Although ABCD2-I and ABCD3-I showed validity, the ABCD3-I score reliably identified highest-risk patients at highest risk of a stroke after transient ischaemic attack with improved risk prediction compared with ABCD2-I. Transient ischaemic attack management guided by ABCD3-I with immediate stroke-specialist assessment, urgent MRI, and vascular imaging should now be considered, with monitoring of safety and cost-effectiveness.Health Research Board of Ireland, Irish Heart Foundation, Irish Health Service Executive, Irish National Lottery, National Medical Research Council of Singapore, Swiss National Science Foundation, Bangerter-Rhyner Foundation, Swiss National Science Foundation, Swisslife Jubiläumsstiftung for Medical Research, Swiss Neurological Society, Fondazione Dr Ettore Balli (Switzerland), Clinical Trial Unit of University of Bern, South Korea's Ministry for Health, Welfare, and Family Affairs, UK Wellcome Trust, Wolfson Foundation, UK Stroke Association, British Heart Foundation, Dunhill Medical Trust, National Institute of Health Research (NIHR), Medical Research Council, and the NIHR Oxford Biomedical Research Centre.

    View details for DOI 10.1016/S1474-4422(16)30236-8

    View details for PubMedID 27751555

  • Novel TIA biomarkers identified by mass spectrometry-based proteomics INTERNATIONAL JOURNAL OF STROKE George, P. M., Mlynash, M., Adams, C. M., Kuo, C. J., Albers, G. W., Olivot, J. 2015; 10 (8): 1204-1211

    View details for DOI 10.1111/ijs.12603

    View details for Web of Science ID 000367673700011

  • Novel Stroke Therapeutics: Unraveling Stroke Pathophysiology and Its Impact on Clinical Treatments NEURON George, P. M., Steinberg, G. K. 2015; 87 (2): 297-309

    Abstract

    Stroke remains a leading cause of death and disability in the world. Over the past few decades our understanding of the pathophysiology of stroke has increased, but greater insight is required to advance the field of stroke recovery. Clinical treatments have improved in the acute time window, but long-term therapeutics remain limited. Complex neural circuits damaged by ischemia make restoration of function after stroke difficult. New therapeutic approaches, including cell transplantation or stimulation, focus on reestablishing these circuits through multiple mechanisms to improve circuit plasticity and remodeling. Other research targets intact networks to compensate for damaged regions. This review highlights several important mechanisms of stroke injury and describes emerging therapies aimed at improving clinical outcomes.

    View details for DOI 10.1016/j.neuron.2015.05.041

    View details for Web of Science ID 000361144200007

  • Beneficial effects of a semi-intensive stroke unit are beyond the monitor. Cerebrovascular diseases Cereda, C. W., George, P. M., Pelloni, L. S., Gandolfi-Decristophoris, P., Mlynash, M., Biancon Montaperto, L., Limoni, C., Stojanova, V., Malacrida, R., Städler, C., Bassetti, C. L. 2015; 39 (2): 102-109

    Abstract

    Precise mechanisms underlying the effectiveness of the stroke unit (SU) are not fully established. Studies that compare monitored stroke units (semi-intensive type, SI-SU) versus an intensive care unit (ICU)-based mobile stroke team (MST-ICU) are lacking. Although inequalities in access to stroke unit care are globally improving, acute stroke patients may be admitted to Intensive Care Units for monitoring and followed by a mobile stroke team in hospital's lacking an SU with continuous cardiovascular monitoring. We aimed at comparing the stroke outcome between SI-SU and MST-ICU and hypothesized that the benefits of SI-SU are driven by additional elements other than cardiovascular monitoring, which is equally offered in both care systems.In a single-center setting, we compared the unfavorable outcomes (dependency and mortality) at 3 months in consecutive patients with ischemic stroke or spontaneous intracerebral hemorrhage admitted to a stroke unit with semi-intensive monitoring (SI-SU) to a cohort of stroke patients hospitalized in an ICU and followed by a mobile stroke team (MST-ICU) during an equal observation period of 27 months. Secondary objectives included comparing mortality and the proportion of patients with excellent outcomes (modified Rankin Score (mRS) 0-1). Equal cardiovascular monitoring was offered in patients admitted in both SI-SU and MST-ICU.458 patients were treated in the SI-SU and compared to the MST-ICU (n = 370) cohort. The proportion of death and dependency after 3 months was significantly improved for patients in the SI-SU compared to MST-ICU (p < 0.001; aOR = 0.45; 95% CI: 0.31-0.65). The shift analysis of the mRS distribution showed significant shift to the lower mRS in the SI-SU group, p < 0.001. The proportion of mortality in patients after 3 months also differed between the MST-ICU and the SI-SU (p < 0.05), but after adjusting for confounders this association was not significant (aOR = 0.59; 95% CI: 0.31-1.13). The proportion of patients with excellent outcome was higher in the SI-SU (59.4 vs. 44.9%, p < 0.001) but the relationship was no more significant after adjustment (aOR = 1.17; 95% CI: 0.87-1.5).Our study shows that moving from a stroke team in a monitored setting (ICU) to an organized stroke unit leads to a significant reduction in the 3 months unfavorable outcome in patients with an acute ischemic or hemorrhagic stroke. Cardiovascular monitoring is indispensable, but benefits of a semi-intensive Stroke Unit are driven by additional elements beyond intensive cardiovascular monitoring. This observation supports the ongoing development of Stroke Centers for efficient stroke care.

    View details for DOI 10.1159/000369919

    View details for PubMedID 25634579

  • Aortic arch atheroma: a plaque of a different color or more of the same? Stroke; a journal of cerebral circulation George, P. M., Albers, G. W. 2014; 45 (5): 1239-1240

    View details for DOI 10.1161/STROKEAHA.114.004827

    View details for PubMedID 24699053

  • Three-dimensional conductive constructs for nerve regeneration. Journal of biomedical materials research. Part A George, P. M., Saigal, R., Lawlor, M. W., Moore, M. J., LaVan, D. A., Marini, R. P., Selig, M., Makhni, M., Burdick, J. A., Langer, R., Kohane, D. S. 2009; 91 (2): 519-527

    Abstract

    The unique electrochemical properties of conductive polymers can be utilized to form stand-alone polymeric tubes and arrays of tubes that are suitable for guides to promote peripheral nerve regeneration. Noncomposite, polypyrrole (PPy) tubes ranging in inner diameter from 25 microm to 1.6 mm as well as multichannel tubes were fabricated by electrodeposition. While oxidation of the pyrrole monomer causes growth of the film, brief subsequent reduction allowed mechanical dissociation from the electrode mold, creating a stand-alone, conductive PPy tube. Conductive polymer nerve guides made in this manner were placed in transected rat sciatic nerves and shown to support nerve regeneration over an 8-week time period.

    View details for DOI 10.1002/jbm.a.32226

    View details for PubMedID 18985787

  • Electrically Controlled Drug Delivery from Biotin-Doped Conductive Polymer Advanced Materials George, P. M., LaVan, D., Burdick, J., Chen, C. Y., Liang, E., Langer, R. 2006; 18 (5)
  • Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics BIOMATERIALS George, P. M., Lyckman, A. W., LaVan, D. A., Hegde, A., Leung, Y., Avasare, R., Testa, C., Alexander, P. M., Langer, R., Sur, M. 2005; 26 (17): 3511-3519

    Abstract

    Finding a conductive substrate that promotes neural interactions is an essential step for advancing neural interfaces. The biocompatibility and conductive properties of polypyrrole (PPy) make it an attractive substrate for neural scaffolds, electrodes, and devices. Stand-alone polymer implants also provide the additional advantages of flexibility and biodegradability. To examine PPy biocompatibility, dissociated primary cerebral cortical cells were cultured on PPy samples that had been doped with polystyrene-sulfonate (PSS) or sodium dodecylbenzenesulfonate (NaDBS). Various conditions were used for electrodeposition to produce different surface properties. Neural networks grew on all of the PPy surfaces. PPy implants, consisting of the same dopants and conditions, were surgically implanted in the cerebral cortex of the rat. The results were compared to stab wounds and Teflon implants of the same size. Quantification of the intensity and extent of gliosis at 3- and 6-week time points demonstrated that all versions of PPy were at least as biocompatible as Teflon and in fact performed better in most cases. In all of the PPy implant cases, neurons and glial cells enveloped the implant. In several cases, neural tissue was present in the lumen of the implants, allowing contact of the brain parenchyma through the implants.

    View details for DOI 10.1016/j.biomaterials.2004.09.037

    View details for Web of Science ID 000226968200016

    View details for PubMedID 15621241

  • Simple, three-dimensional microfabrication of electrodeposited structures ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LaVan, D. A., George, P. M., Langer, R. 2003; 42 (11): 1262-1265

    View details for Web of Science ID 000181872300008

    View details for PubMedID 12645058

  • Fabrication of Screen-Printed Carbon Electrode Arrays for Sensing Neuronal Messengers BIOMEDICAL MICRODEVICES George, P. M., Muthuswamy, J., Currie, J., Thakor, N. V., Paranjape, M. 2001; 3 (4): 307-313

Footer Links:

Stanford Medicine Resources: