Bio

Professional Education


  • Doctor of Philosophy, Universite De Geneve (2013)

Stanford Advisors


Publications

All Publications


  • Isolated Congenital Anosmia and CNGA2 Mutation. Scientific reports Sailani, M. R., Jingga, I., MirMazlomi, S. H., Bitarafan, F., Bernstein, J. A., Snyder, M. P., Garshasbi, M. 2017; 7 (1): 2667-?

    Abstract

    Isolated congenital anosmia (ICA) is a rare condition that is associated with life-long inability to smell. Here we report a genetic characterization of a large Iranian family segregating ICA. Whole exome sequencing in five affected family members and five healthy members revealed a stop gain mutation in CNGA2 (OMIM 300338) (chrX:150,911,102; CNGA2. c.577C?>?T; p.Arg193*). The mutation segregates in an X-linked pattern, as all the affected family members are hemizygotes, whereas healthy family members are either heterozygote or homozygote for the reference allele. cnga2 knockout mice are congenitally anosmic and have abnormal olfactory system physiology, additionally Karstensen et al. recently reported two anosmic brothers sharing a CNGA2 truncating variant. Our study in concert with these findings provides strong support for role of CNGA2 gene with pathogenicity of ICA in humans. Together, these results indicate that mutations in key olfactory signaling pathway genes are responsible for human disease.

    View details for DOI 10.1038/s41598-017-02947-y

    View details for PubMedID 28572688

  • Association of AHSG with alopecia and mental retardation (APMR) syndrome. Human genetics Reza Sailani, M., Jahanbani, F., Nasiri, J., Behnam, M., Salehi, M., Sedghi, M., Hoseinzadeh, M., Takahashi, S., Zia, A., Gruber, J., Lynch, J. L., Lam, D., Winkelmann, J., Amirkiai, S., Pang, B., Rego, S., Mazroui, S., Bernstein, J. A., Snyder, M. P. 2017; 136 (3): 287-296

    Abstract

    Alopecia with mental retardation syndrome (APMR) is a very rare autosomal recessive condition that is associated with total or partial absence of hair from the scalp and other parts of the body as well as variable intellectual disability. Here we present whole-exome sequencing results of a large consanguineous family segregating APMR syndrome with seven affected family members. Our study revealed a novel predicted pathogenic, homozygous missense mutation in the AHSG (OMIM 138680) gene (AHSG: NM_001622:exon7:c.950G>A:p.Arg317His). The variant is predicted to affect a region of the protein required for protein processing and disrupts a phosphorylation motif. In addition, the altered protein migrates with an aberrant size relative to healthy individuals. Consistent with the phenotype, AHSG maps within APMR linkage region 1 (APMR 1) as reported before, and falls within runs of homozygosity (ROH). Previous families with APMR syndrome have been studied through linkage analyses and the linkage resolution did not allow pointing out to a single gene candidate. Our study is the first report to identify a homozygous missense mutation for APMR syndrome through whole-exome sequencing.

    View details for DOI 10.1007/s00439-016-1756-5

    View details for PubMedID 28054173

Footer Links:

Stanford Medicine Resources: