Academic Appointments

  • Instructor, Institute for Stem Cell Biology and Regenerative Medicine


All Publications

  • Myeloid Cell Origins, Differentiation, and Clinical Implications. Microbiology spectrum Weiskopf, K., Schnorr, P. J., Pang, W. W., Chao, M. P., Chhabra, A., Seita, J., Feng, M., Weissman, I. L. 2016; 4 (5)


    The hematopoietic stem cell (HSC) is a multipotent stem cell that resides in the bone marrow and has the ability to form all of the cells of the blood and immune system. Since its first purification in 1988, additional studies have refined the phenotype and functionality of HSCs and characterized all of their downstream progeny. The hematopoietic lineage is divided into two main branches: the myeloid and lymphoid arms. The myeloid arm is characterized by the common myeloid progenitor and all of its resulting cell types. The stages of hematopoiesis have been defined in both mice and humans. During embryological development, the earliest hematopoiesis takes place in yolk sac blood islands and then migrates to the fetal liver and hematopoietic organs. Some adult myeloid populations develop directly from yolk sac progenitors without apparent bone marrow intermediates, such as tissue-resident macrophages. Hematopoiesis also changes over time, with a bias of the dominating HSCs toward myeloid development as animals age. Defects in myelopoiesis contribute to many hematologic disorders, and some of these can be overcome with therapies that target the aberrant stage of development. Furthermore, insights into myeloid development have informed us of mechanisms of programmed cell removal. The CD47/SIRP? axis, a myeloid-specific immune checkpoint, limits macrophage removal of HSCs but can be exploited by hematologic and solid malignancies. Therapeutics targeting CD47 represent a new strategy for treating cancer. Overall, an understanding of hematopoiesis and myeloid cell development has implications for regenerative medicine, hematopoietic cell transplantation, malignancy, and many other diseases.

    View details for DOI 10.1128/microbiolspec.MCHD-0031-2016

    View details for PubMedID 27763252

  • Macrophages eat cancer cells using their own calreticulin as a guide: Roles of TLR and Btk PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Feng, M., Chen, J. Y., Weissman-Tsukamoto, R., Volkmer, J., Ho, P. Y., McKenna, K. M., Cheshier, S., Zhang, M., Guo, N., Gip, P., Mitra, S. S., Weissman, I. L. 2015; 112 (7): 2145-2150


    Macrophage-mediated programmed cell removal (PrCR) is an important mechanism of eliminating diseased and damaged cells before programmed cell death. The induction of PrCR by eat-me signals on tumor cells is countered by don't-eat-me signals such as CD47, which binds macrophage signal-regulatory protein ? to inhibit phagocytosis. Blockade of CD47 on tumor cells leads to phagocytosis by macrophages. Here we demonstrate that the activation of Toll-like receptor (TLR) signaling pathways in macrophages synergizes with blocking CD47 on tumor cells to enhance PrCR. Bruton's tyrosine kinase (Btk) mediates TLR signaling in macrophages. Calreticulin, previously shown to be an eat-me signal on cancer cells, is activated in macrophages for secretion and cell-surface exposure by TLR and Btk to target cancer cells for phagocytosis, even if the cancer cells themselves do not express calreticulin.

    View details for DOI 10.1073/pnas.1424907112

    View details for Web of Science ID 000349446000075

Footer Links:

Stanford Medicine Resources: