Bio

Honors & Awards


  • Cournand and Comroe Young Investigator Award, AHA (11/18/2014)
  • AHA Postdoc Award, American Heart Association (2013-2015)
  • Dean Postdoc Fellowship, Stanford University (2013)

Professional Education


  • Doctor of Philosophy, Temple University (2011)
  • Bachelor of Science, Zhejiang University (2006)

Stanford Advisors


Publications

Journal Articles


  • Activation of the Wnt/Planar Cell Polarity Pathway Is Required for Pericyte Recruitment during Pulmonary Angiogenesis AMERICAN JOURNAL OF PATHOLOGY Yuan, K., Orcholski, M. E., Panaroni, C., Shuffle, E. M., Huang, N. F., Jiang, X., Tian, W., Vladar, E. K., Wang, L., Nicolls, M. R., Wu, J. Y., Perez, V. A. 2015; 185 (1): 69-84

    Abstract

    Pericytes are perivascular cells localized to capillaries that promote vessel maturation, and their absence can contribute to vessel loss. Whether impaired endothelial-pericyte interaction contributes to small vessel loss in pulmonary arterial hypertension (PAH) is unclear. Using 3G5-specific, immunoglobulin G-coated magnetic beads, we isolated pericytes from the lungs of healthy subjects and PAH patients, followed by lineage validation. PAH pericytes seeded with healthy pulmonary microvascular endothelial cells failed to associate with endothelial tubes, resulting in smaller vascular networks compared to those with healthy pericytes. After the demonstration of abnormal polarization toward endothelium via live-imaging and wound-healing studies, we screened PAH pericytes for abnormalities in the Wnt/planar cell polarity (PCP) pathway, which has been shown to regulate cell motility and polarity in the pulmonary vasculature. PAH pericytes had reduced expression of frizzled 7 (Fzd7) and cdc42, genes crucial for Wnt/PCP activation. With simultaneous knockdown of Fzd7 and cdc42 in healthy pericytes in vitro and in a murine model of angiogenesis, motility and polarization toward pulmonary microvascular endothelial cells were reduced, whereas with restoration of both genes in PAH pericytes, endothelial-pericyte association was improved, with larger vascular networks. These studies suggest that the motility and polarity of pericytes during pulmonary angiogenesis are regulated by Wnt/PCP activation, which can be targeted to prevent vessel loss in PAH.

    View details for DOI 10.1016/j.ajpath.2014.09.013

    View details for Web of Science ID 000346887200008

  • Perlecan Heparan Sulfate Deficiency Impairs Pulmonary Vascular Development and Attenuates Hypoxic Pulmonary Hypertension. Cardiovascular research Chang, Y. T., Tseng, C. N., Tannenberg, P., Eriksson, L., Yuan, K., de Jesus Perez, V. A., Lundberg, J., Lengquist, M., Botusan, I. R., Catrina, S. B., Tran, P. K., Hedin, U., Tran-Lundmark, K. 2015

    Abstract

    Excessive vascular cell proliferation is an important component of pulmonary hypertension (PH). Perlecan is the major heparan sulfate (HS) proteoglycan in the vascular extracellular matrix. It binds growth factors, including FGF2, and either restricts or promotes cell proliferation. In this study we have explored the effects of perlecan HS deficiency on pulmonary vascular development and in hypoxia-induced PH.In normoxia, Hspg2(r3/r3) mice, deficient in perlecan HS, had reduced pericytes and muscularization of intra-acinar vessels. Pulmonary angiography revealed a peripheral perfusion defect. Despite these abnormalities, right ventricular systolic pressure (RVSP) and myocardial mass remained normal. After 4 weeks of hypoxia, increases in proportion of muscularized vessels, RVSP, and right ventricular hypertrophy were significantly less in Hspg2(r3/r3) compared to wild-type. The early phase of hypoxia induced a significantly lower increase in fibroblast growth factor receptor-1 (FGFR1) protein level and receptor phosphorylation, and reduced pulmonary artery smooth muscle cell (PASMC) proliferation in Hspg2(r3/r3). At 4 weeks, FGF2 mRNA and protein were also significantly reduced in Hspg2(r3/r3) lungs. Ligand and carbohydrate engagement assay showed that perlecan HS is required for HS-FGF2-FGFR1 ternary complex formation. In vitro, proliferation assays showed that PASMC proliferation is reduced by selective FGFR1 inhibition. PASMC adhesion to fibronectin was higher in Hspg2(r3/r3) compared to wild-type.Perlecan HS chains are important for normal vascular arborization and recruitment of pericytes to pulmonary vessels. Perlecan HS deficiency also attenuates hypoxia-induced PH, where the underlying mechanisms involve impaired FGF2/FGFR1 interaction, inhibition of PASMC growth, and altered cell-matrix interactions.

    View details for DOI 10.1093/cvr/cvv143

    View details for PubMedID 25952902

  • Cyclosporine Does Not Prevent Microvascular Loss in Transplantation but Can Synergize With a Neutrophil Elastase Inhibitor, Elafin, to Maintain Graft Perfusion During Acute Rejection. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons Jiang, X., Nguyen, T. T., Tian, W., Sung, Y. K., Yuan, K., Qian, J., Rajadas, J., Sallenave, J. M., Nickel, N. P., de Jesus Perez, V., Rabinovitch, M., Nicolls, M. R. 2015

    Abstract

    The loss of a functional microvascular bed in rejecting solid organ transplants is correlated with fibrotic remodeling and chronic rejection; in lung allografts, this pathology is predicted by bronchoalveolar fluid neutrophilia which suggests a role for polymorphonuclear cells in microcirculatory injury. In a mouse orthotopic tracheal transplant model, cyclosporine, which primarily inhibits T cells, failed as a monotherapy for preventing microvessel rejection and graft ischemia. To target neutrophil action that may be contributing to vascular injury, we examined the effect of a neutrophil elastase inhibitor, elafin, on the microvascular health of transplant tissue. We showed that elafin monotherapy prolonged microvascular perfusion and enhanced tissue oxygenation while diminishing the infiltration of neutrophils and macrophages and decreasing tissue deposition of complement C3 and the membrane attack complex, C5b-9. Elafin was also found to promote angiogenesis through activation of the extracellular signal-regulated kinase (ERK) signaling pathway but was insufficient as a single agent to completely prevent tissue ischemia during acute rejection episodes. However, when combined with cyclosporine, elafin effectively preserved airway microvascular perfusion and oxygenation. The therapeutic strategy of targeting neutrophil elastase activity alongside standard immunosuppression during acute rejection episodes may be an effective approach for preventing the development of irreversible fibrotic remodeling.

    View details for DOI 10.1111/ajt.13189

    View details for PubMedID 25727073

  • Oxido-reductive regulation of vascular remodeling by receptor tyrosine kinase ROS1 JOURNAL OF CLINICAL INVESTIGATION Ali, Z. A., Perez, V. D., Yuan, K., Orcholski, M., Pan, S., Qi, W., Chopra, G., Adams, C., Kojima, Y., Leeper, N. J., Qu, X., Zaleta-Rivera, K., Kato, K., Yamada, Y., Oguri, M., Kuchinsky, A., Hazen, S. L., Jukema, J. W., Ganesh, S. K., Nabe, E. G., Channon, K., Leon, M. B., Charest, A., Quertermous, T., Ashley, E. A. 2014; 124 (12): 5159-5174

    Abstract

    Angioplasty and stenting is the primary treatment for flow-limiting atherosclerosis; however, this strategy is limited by pathological vascular remodeling. Using a systems approach, we identified a role for the network hub gene glutathione peroxidase-1 (GPX1) in pathological remodeling following human blood vessel stenting. Constitutive deletion of Gpx1 in atherosclerotic mice recapitulated this phenotype of increased vascular smooth muscle cell (VSMC) proliferation and plaque formation. In an independent patient cohort, gene variant pair analysis identified an interaction of GPX1 with the orphan protooncogene receptor tyrosine kinase ROS1. A meta-analysis of the only genome-wide association studies of human neointima-induced in-stent stenosis confirmed the association of the ROS1 variant with pathological remodeling. Decreased GPX1 expression in atherosclerotic mice led to reductive stress via a time-dependent increase in glutathione, corresponding to phosphorylation of the ROS1 kinase activation site Y2274. Loss of GPX1 function was associated with both oxidative and reductive stress, the latter driving ROS1 activity via s-glutathiolation of critical residues of the ROS1 tyrosine phosphatase SHP-2. ROS1 inhibition with crizotinib and deglutathiolation of SHP-2 abolished GPX1-mediated increases in VSMC proliferation while leaving endothelialization intact. Our results indicate that GPX1-dependent alterations in oxido-reductive stress promote ROS1 activation and mediate vascular remodeling.

    View details for DOI 10.1172/JCI77484

    View details for Web of Science ID 000345677200011

    View details for PubMedID 25401476

  • Targeting the Wnt signaling pathways in pulmonary arterial hypertension DRUG DISCOVERY TODAY Perez, V. d., Yuan, K., Alastalo, T., Spiekerkoetter, E., Rabinovitch, M. 2014; 19 (8): 1270-1276
  • Targeting the Wnt signaling pathways in pulmonary arterial hypertension. Drug discovery today de Jesus Perez, V., Yuan, K., Alastalo, T., Spiekerkoetter, E., Rabinovitch, M. 2014; 19 (8): 1270-1276

    Abstract

    Pulmonary arterial hypertension (PAH) is a life-threatening disorder that is associated with elevated pulmonary pressures and right heart failure resulting from progressive loss and thickening of small pulmonary arteries. Despite their ability to improve symptoms, current therapies fail to prevent disease progression, leaving lung transplantation as the only therapy in end-stage PAH. To overcome the limitations of current therapies, there is an active search for disease-modifying agents capable of altering the natural history of, and improving clinical outcomes in, PAH. The Wnt signaling pathways have emerged as attractive treatment targets in PAH given their role in the preservation of pulmonary vascular homeostasis and the recent development of Wnt-specific compounds and biological therapies capable of modulating pathway activity. In this review, we summarize the literature describing the role of Wnt signaling in the pulmonary circulation and discuss promising advances in the field of Wnt therapeutics that could lead to novel clinical therapies capable of preventing and/or reversing pulmonary vascular pathology in patients with this devastating disease.

    View details for DOI 10.1016/j.drudis.2014.06.014

    View details for PubMedID 24955837

  • Loss of Bone Morphogenetic Protein Receptor 2 Is Associated with Abnormal DNA Repair in Pulmonary Arterial Hypertension AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY Li, M., Vattulainen, S., Aho, J., Orcholski, M., Rojas, V., Yuan, K., Helenius, M., Taimen, P., Myllykangas, S., Perez, V. D., Koskenvuo, J. W., Alastalo, T. 2014; 50 (6): 1118-1128
  • Whole-Exome Sequencing Reveals TopBP1 as a Novel Gene in Idiopathic Pulmonary Arterial Hypertension AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE Perez, V. A., Yuan, K., Lyuksyutova, M. A., Dewey, F., Orcholski, M. E., Shuffle, E. M., Mathur, M., Yancy, L., Rojas, V., Li, C. G., Cao, A., Alastalo, T., Khazeni, N., Cimprich, K. A., Butte, A. J., Ashley, E., Zamanian, R. T. 2014; 189 (10): 1260-1272

    Abstract

    Rationale: Idiopathic pulmonary arterial hypertension (IPAH) is a life-threatening disorder characterized by progressive loss of pulmonary microvessels. While mutations in the bone morphogenetic receptor (BMPR) 2 are found in 80% of heritable and ±15% of IPAH patients, their low penetrance (±20%) suggests that other as-yet unidentified genetic modifiers are required for manifestation of the disease phenotype. Use of whole exome sequencing (WES) has recently led to the discovery of novel susceptibility genes in heritable PAH but whether WES can also accelerate gene discovery in IPAH remains unknown. Objectives: To determine whether WES can help identify novel gene modifiers in IPAH patients. Methods and Measurements: Exome capture and sequencing was performed on genomic DNA isolated from 12 unrelated IPAH patients lacking BMPR2 mutations. Observed genetic variants were prioritized according to their pathogenic potential using ANNOVAR. Main Results: A total of 10 genes were identified as high priority candidates. Our top hit was TopBP1, a gene involved in the response to DNA damage and replication stress. We found that TopBP1 expression was reduced in vascular lesions and pulmonary endothelial cells isolated from IPAH patients. While TopBP1 deficiency made endothelial cells susceptible to DNA damage and apoptosis in response to hydroxyurea, its restoration resulted in less DNA damage and improved cell survival. Conclusions: WES led to the discovery of TopBP1, a gene whose deficiency may increase susceptibly to small vessel loss in IPAH. We predict that use of WES will help identify gene modifiers that influence an individual's risk of developing IPAH.

    View details for DOI 10.1164/rccm.201310-17490C

    View details for Web of Science ID 000336017200018

  • Leukotrienes in pulmonary arterial hypertension IMMUNOLOGIC RESEARCH Tian, W., Jiang, X., Sung, Y. K., Qian, J., Yuan, K., Nicolls, M. R. 2014; 58 (2-3): 387-393

    Abstract

    Leukotrienes (LTs) are lipid mediators derived from the 5-lipoxygenase (5-LO) pathway of arachidonic acid metabolism and are markers and mediators of pulmonary inflammation. Research over the past two decades has established that LTs modulate inflammation in pulmonary arterial hypertension (PAH). The purpose of this review was to summarize the current knowledge of LTs in the pathophysiology of PAH and to highlight a recent study that advances our understanding of how leukotriene B4 (LTB4) specifically contributes to pulmonary vascular remodeling. The results of these studies suggest that pharmacological inhibition of LT pathways, especially LTB4, has high potential for the treatment of PAH.

    View details for DOI 10.1007/s12026-014-8492-5

    View details for Web of Science ID 000336333700026

    View details for PubMedID 24570092

  • Perioperative pharmacological management of pulmonary hypertensive crisis during congenital heart surgery. Pulmonary circulation Brunner, N., de Jesus Perez, V. A., Richter, A., Haddad, F., Denault, A., Rojas, V., Yuan, K., Orcholski, M., Liao, X. 2014; 4 (1): 10-24

    Abstract

    Pulmonary hypertensive crisis is an important cause of morbidity and mortality in patients with pulmonary arterial hypertension secondary to congenital heart disease (PAH-CHD) who require cardiac surgery. At present, prevention and management of perioperative pulmonary hypertensive crisis is aimed at optimizing cardiopulmonary interactions by targeting prostacyclin, endothelin, and nitric oxide signaling pathways within the pulmonary circulation with various pharmacological agents. This review is aimed at familiarizing the practitioner with the current pharmacological treatment for dealing with perioperative pulmonary hypertensive crisis in PAH-CHD patients. Given the life-threatening complications associated with pulmonary hypertensive crisis, proper perioperative planning can help anticipate cardiopulmonary complications and optimize surgical outcomes in this patient population.

    View details for DOI 10.1086/674885

    View details for PubMedID 25006417

  • Tie2-dependent VHL knockdown promotes airway microvascular regeneration and attenuates invasive growth of Aspergillus fumigatus JOURNAL OF MOLECULAR MEDICINE-JMM Jiang, X., Hsu, J. L., Tian, W., Yuan, K., Olcholski, M., Perez, V. D., Semenza, G. L., Nicolls, M. R. 2013; 91 (9): 1081-1093
  • MiR-133a Modulates Osteogenic Differentiation of Vascular Smooth Muscle Cells ENDOCRINOLOGY Liao, X., Zhang, Z., Yuan, K., Liu, Y., Feng, X., Cui, R., Hu, Y., Yuan, Z., Gu, L., Li, S., Mao, D., Lu, Q., Zhou, X., Perez, V. A., Yuan, L. 2013; 154 (9): 3344-3352
  • MicroRNAs: promising therapeutic targets for the treatment of pulmonary arterial hypertension EXPERT OPINION ON THERAPEUTIC TARGETS Yuan, K., Orcholski, M., Tian, X., Liao, X., Perez, V. A. 2013; 17 (5): 557-564

    Abstract

    MicroRNAs (miRNAs) are small noncoding RNAs that not only regulate gene expression during normal development but can also be active players in several diseases. To date, several studies have demonstrated a possible role for specific miRNAs in the regulation of pulmonary vascular homeostasis suggesting that novel therapeutic agents which target these modulators of gene expression could serve to treat pulmonary arterial hypertension (PAH). AREAS COVERED: The characterization of miRNA-mediated gene modulation in the pulmonary circulation is expanding very rapidly. This review summarizes current relevant findings on the role of miRNAs in the pathogenesis of PAH and expands on the potential use of agents that target these molecules as future disease-modifying therapies. EXPERT OPINION: Further understanding of miRNA biology and function in the pulmonary circulation will serve to further enhance our understanding of their contribution to the pathogenesis of PAH. The implementation of a systems biology approach will help accelerate the discovery of miRNAs that influence angiogenesis and cellular responses to vascular injury. Experimental characterization of these miRNAs using in vitro and in vivo methods will be required to validate the biological roles of these miRNAs prior to the consideration of their use as therapeutic targets in future clinical trials.

    View details for DOI 10.1517/14728222.2013.765863

    View details for Web of Science ID 000317935400008

  • Loss of adenomatous poliposis coli-a3 integrin interaction promotes endothelial apoptosis in mice and humans. Circulation research de Jesus Perez, V. A., Yuan, K., Orcholski, M. E., Sawada, H., Zhao, M., Li, C. G., Tojais, N. F., Nickel, N., Rajagopalan, V., Spiekerkoetter, E., Wang, L., Dutta, R., Bernstein, D., Rabinovitch, M. 2012; 111 (12): 1551-1564

    Abstract

    Pulmonary hypertension (PH) is characterized by progressive elevation in pulmonary pressure and loss of small pulmonary arteries. As bone morphogenetic proteins promote pulmonary angiogenesis by recruiting the Wnt/?-catenin pathway, we proposed that ?-catenin activation could reduce loss and induce regeneration of small pulmonary arteries (PAs) and attenuate PH.This study aims to establish the role of ?-catenin in protecting the pulmonary endothelium and stimulating compensatory angiogenesis after injury.To assess the impact of ?-catenin activation on chronic hypoxia-induced PH, we used the adenomatous polyposis coli (Apc(Min/+)) mouse, where reduced APC causes constitutive ?-catenin elevation. Surprisingly, hypoxic Apc(Min/+) mice displayed greater PH and small PA loss compared with control C57Bl6J littermates. PA endothelial cells isolated from Apc(Min/+) demonstrated reduced survival and angiogenic responses along with a profound reduction in adhesion to laminin. The mechanism involved failure of APC to interact with the cytoplasmic domain of the ?3 integrin, to stabilize focal adhesions and activate integrin-linked kinase-1 and phospho Akt. We found that PA endothelial cells from lungs of patients with idiopathic PH have reduced APC expression, decreased adhesion to laminin, and impaired vascular tube formation. These defects were corrected in the cultured cells by transfection of APC.We show that APC is integral to PA endothelial cells adhesion and survival and is reduced in PA endothelial cells from PH patient lungs. The data suggest that decreased APC may be a cause of increased risk or severity of PH in genetically susceptible individuals.

    View details for DOI 10.1161/CIRCRESAHA.112.267849

    View details for PubMedID 23011394

  • Loss of Adenomatous Poliposis Coli-alpha 3 Integrin Interaction Promotes Endothelial Apoptosis in Mice and Humans CIRCULATION RESEARCH Perez, V. A., Yuan, K., Orcholski, M. E., Sawada, H., Zhao, M., Li, C. G., Tojais, N. F., Nickel, N., Rajagopalan, V., Spiekerkoetter, E., Wang, L., Dutta, R., Bernstein, D., Rabinovitch, M. 2012; 111 (12): 1551-?
  • Role of miR-148a in Hepatitis B Associated Hepatocellular Carcinoma PLOS ONE Yuan, K., Lian, Z., Sun, B., Clayton, M. M., Ng, I. O., Feitelson, M. A. 2012; 7 (4)

    Abstract

    Hepatitis B virus encoded X antigen (HBx) is a trans-regulatory protein that alters the activity of selected transcription factors and cytoplasmic signal transduction pathways. HBx transcriptionally up-regulates the expression of a unique gene, URG11, which in turn transcriptionally up-regulates ?-catenin, thereby contributing importantly to hepatocarcinogenesis. HBx and URG11 also alter the expression of multiple microRNAs, and by miRNA array analysis, both were shown to promote the expression of miR-148a. Elevated miR-148a was also seen in HBx positive liver samples from infected patients. To study the function of miR-148a, anti-148a was introduced into HepG2 and Hep3B cells stably expressing HBx or stably over-expressing URG11. Anti-miR-148a suppressed cell proliferation, cell cycle progression, cell migration, anchorage independent growth in soft agar and subcutaneous tumor formation in SCID mice. Introduction of anti-miR-148a increased PTEN protein and mRNA expression, suggesting that PTEN was targeted by miR-148a. Anti-miR-148a failed to suppress PTEN expression when co-transfected with reporter gene mutants in the 3'UTR of PTEN mRNA. Introduction of anti-miR-148a also resulted in depressed Akt signaling by HBx and URG11, resulting in decreased expression of ?-catenin. Thus, miR-148a may play a central role in HBx/URG11 mediated HCC, and may be an early diagnostic marker and/or therapeutic target associated with this tumor type.

    View details for DOI 10.1371/journal.pone.0035331

    View details for Web of Science ID 000305014500055

    View details for PubMedID 22496917

Footer Links:

Stanford Medicine Resources: