Bio

Clinical Focus


  • Cardiovascular Disease
  • Coronary Artery Disease
  • Acute Coronary Syndrome
  • Percutaneous Coronary Intervention
  • Aortic Valve Stenosis
  • Transcatheter Aortic Valve Replacement

Academic Appointments


Professional Education


  • Fellowship:Stanford University School of Medicine (2015) CA
  • Board Certification: Cardiovascular Disease, American Board of Internal Medicine (2014)
  • Fellowship:Stanford University School of Medicine (2014) CA
  • Board Certification: Internal Medicine, American Board of Internal Medicine (2009)
  • Residency:UCLA Medical Center (2009) CA
  • Medical Education:New York University School of Medicine (2006) NY

Publications

All Publications


  • Characterization of TCF21 Downstream Target Regions Identifies a Transcriptional Network Linking Multiple Independent Coronary Artery Disease Loci PLOS GENETICS Sazonova, O., Zhao, Y., Nuernberg, S., Miller, C., Pjanic, M., Castano, V. G., Kim, J. B., Salfati, E. L., Kundaje, A. B., Bejerano, G., Assimes, T., Yang, X., Quertermous, T. 2015; 11 (5)
  • Coronary Artery Disease Associated Transcription Factor TCF21 Regulates Smooth Muscle Precursor Cells That Contribute to the Fibrous Cap PLOS GENETICS Nurnberg, S. T., Cheng, K., Raiesdana, A., Kundu, R., Miller, C. L., Kim, J. B., Arora, K., Carcamo-Oribe, I., Xiong, Y., Tellakula, N., Nanda, V., Murthy, N., Boisvert, W. A., Hedin, U., Perisic, L., Aldi, S., Maegdefessel, L., Pjanic, M., Owens, G. K., Tallquist, M. D., Quertermous, T. 2015; 11 (5)
  • Continuous flow left ventricular assist device placement complicated by aortic valve thrombus and myocardial infarction INTERNATIONAL JOURNAL OF CARDIOLOGY Kim, J. B., Rhee, J., Brenner, D. A., Ha, R., Banerjee, D., Yeung, A. C., Tremmel, J. A. 2014; 176 (3): E102-E103
  • Presence of plaques predicts worse outcomes in multi-detector computed tomography in patients with stable chest pain syndrome INTERNATIONAL JOURNAL OF CARDIOLOGY Kim, J. B., Rogers, I. S., Kwon, S. U. 2014; 173 (3): 570-572

    View details for DOI 10.1016/j.ijcard.2014.03.118

    View details for Web of Science ID 000335227900075

    View details for PubMedID 24717325

  • Heart Failure is Associated With Impaired Anti-Inflammatory and Antioxidant Properties of High-Density Lipoproteins AMERICAN JOURNAL OF CARDIOLOGY Kim, J. B., Hama, S., Hough, G., Navab, M., Fogelman, A. M., MacLellan, W. R., Horwich, T. B., Fonarow, G. C. 2013; 112 (11): 1770-1777

    Abstract

    Oxidative stress and inflammation are hallmarks of the heart failure (HF) disease state. In the present study, we investigated the inflammatory/anti-inflammatory characteristics of high-density lipoproteins (HDL) in patients with HF. Ninety-six consecutive patients with systolic HF were followed in an advanced HF center, and 21 healthy subjects were recruited. Plasma was tested for HDL inflammatory index (HII) using a monocyte chemotactic activity assay, with HII >1.0 indicating proinflammatory HDL. We found significantly increased inflammatory properties of HDL in patients with HF (median HII 1.56 vs 0.59 in controls; p <0.0001). Serum amyloid A level was markedly elevated and the activity of paraoxonase-1, an HDL antioxidant enzyme, was significantly reduced in patients versus controls. HDL and albumin from patients with HF contained markedly elevated levels of oxidized products of arachidonic and linoleic acids. HDL function improved when plasma was treated in vitro with 4F, an apolipoprotein A-I mimetic peptide (40% reduction in HII, p <0.0001). There was no correlation found between HII level and ejection fraction or New York Heart Association functional class. In conclusion, HDL function is significantly impaired and oxidation products of arachidonic and linoleic acids are markedly elevated in patients with HF compared with non-HF controls.

    View details for DOI 10.1016/j.amjcard.2013.07.045

    View details for Web of Science ID 000327685900012

    View details for PubMedID 24050409

  • Anti-Inflammatory Strategies for Plaque Stabilization after Acute Coronary Syndromes CURRENT ATHEROSCLEROSIS REPORTS Baruch, A., van Bruggen, N., Kim, J. B., Lehrer-Graiwer, J. E. 2013; 15 (6)

    Abstract

    Despite dramatic advances in standard of care, the risk of recurrent myocardial infarction early after an acute coronary syndrome (ACS) remains high. This period of elevated risk after a cardiovascular event is associated with an acute inflammatory response. While post-ACS inflammation correlates with the risk for recurrent events and is likely to play a causal role in this period, the precise pathophysiologic mechanisms have been unclear. Recent studies have proposed that the cardiac event itself activates the sympathetic nervous system to directly mobilize hematopoietic stem cells to differentiate into inflammatory monocytes, acutely infiltrate plaque, and lead to recurrent plaque rupture. Here, we summarize the existing and emerging evidence implicating post-ACS activation of systemic inflammation in the progression of atherosclerosis, and identify possible targets for therapeutic intervention. We highlight experimental therapies and ongoing clinical studies that will validate these targets.

    View details for DOI 10.1007/s11883-013-0327-7

    View details for Web of Science ID 000320656500002

    View details for PubMedID 23636864

  • Effect of 9p21.3 coronary artery disease locus neighboring genes on atherosclerosis in mice. Circulation Kim, J. B., DeLuna, A., Mungrue, I. N., Vu, C., Pouldar, D., Civelek, M., Orozco, L., Wu, J., Wang, X., Charugundla, S., Castellani, L. W., Rusek, M., Jakubowski, H., Lusis, A. J. 2012; 126 (15): 1896-1906

    Abstract

    The human 9p21.3 chromosome locus has been shown to be an independent risk factor for atherosclerosis in multiple large-scale genome-wide association studies, but the underlying mechanism remains unknown. We set out to investigate the potential role of the 9p21.3 locus neighboring genes, including Mtap, the 2 isoforms of Cdkn2a, p16Ink4a and p19Arf, and Cdkn2b, in atherosclerosis using knockout mice models.Gene-targeted mice for neighboring genes, including Mtap, Cdkn2a, p19Arf, and Cdkn2b, were each bred to mice carrying the human APO*E3 Leiden transgene that sensitizes the mice for atherosclerotic lesions through elevated plasma cholesterol. We found that the mice heterozygous for Mtap developed larger lesions compared with wild-type mice (49623±21650 versus 18899±9604 ?m(2) per section [mean±SD]; P=0.01), with morphology similar to that of wild-type mice. The Mtap heterozygous mice demonstrated changes in metabolic and methylation profiles and CD4(+) cell counts. The Cdkn2a knockout mice had smaller lesions compared with wild-type and heterozygous mice, and there were no significant differences in lesion size in p19Arf and Cdkn2b mutants compared with wild type. We observed extensive, tissue-specific compensatory regulation of the Cdkn2a and Cdkn2b genes among the various knockout mice, making the effects on atherosclerosis difficult to interpret.Mtap plays a protective role against atherosclerosis, whereas Cdkn2a appears to be modestly proatherogenic. However, no relation was found between the 9p21 genotype and the transcription of 9p21 neighboring genes in primary human aortic vascular cells in vitro. There is extensive compensatory regulation in the highly conserved 9p21 orthologous region in mice.

    View details for DOI 10.1161/CIRCULATIONAHA.111.064881

    View details for PubMedID 22952318

  • Paraoxonase-2 Modulates Stress Response of Endothelial Cells to Oxidized Phospholipids and a Bacterial Quorum-Sensing Molecule ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY Kim, J. B., Xia, Y., Romanoski, C. E., Lee, S., Meng, Y., Shi, Y., Bourquard, N., Gong, K. W., Port, Z., Grijalva, V., Reddy, S. T., Berliner, J. A., Lusis, A. J., Shih, D. M. 2011; 31 (11): 2624-U688

    Abstract

    Chronic infection has long been postulated as a stimulus for atherogenesis. Pseudomonas aeruginosa infection has been associated with increased atherosclerosis in rats, and these bacteria produce a quorum-sensing molecule 3-oxo-dodecynoyl-homoserine lactone (3OC12-HSL) that is critical for colonization and virulence. Paraoxonase 2 (PON2) hydrolyzes 3OC12-HSL and also protects against the effects of oxidized phospholipids thought to contribute to atherosclerosis. We now report the response of human aortic endothelial cells (HAECs) to 3OC12-HSL and oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (Ox-PAPC) in relation to PON2 expression.Using expression profiling and network modeling, we identified the unfolded protein response (UPR), cell cycle genes, and the mitogen-activated protein kinase signaling pathway to be heavily involved in the HAEC response to 3OC12-HSL. The network also showed striking similarities to a network created based on HAEC response to Ox-PAPC, a major component of minimally modified low-density lipoprotein. HAECs in which PON2 was silenced by small interfering RNA showed increased proinflammatory response and UPR when treated with 3OC12-HSL or Ox-PAPC.3OC12-HSL and Ox-PAPC influence similar inflammatory and UPR pathways. Quorum sensing molecules, such as 3OC12-HSL, contribute to the proatherogenic effects of chronic infection. The antiatherogenic effects of PON2 include destruction of quorum sensing molecules.

    View details for DOI 10.1161/ATVBAHA.111.232827

    View details for Web of Science ID 000296605400037

    View details for PubMedID 21836061

  • The Effect of HDL Mimetic Peptide 4F on PON1 PARAOXONASES IN INFLAMMATION, INFECTION, AND TOXICOLOGY Vakili, L., Hama, S., Kim, J. B., Tien, D., Safarpoor, S., Ly, N., Vakili, G., Hough, G., Navab, M. 2010; 660: 167-172

    Abstract

    Several lines of evidence indicate that serum paraoxonase 1 (PON1) acts as an important guardian against cellular damage from oxidized lipids in plasma membrane, in low-density lipoprotein (LDL), against bacterial endotoxin and against toxic agents such as pesticide residues including organophosphates. In circulation, the high-density lipoprotein (HDL)-associated PON1 has the ability to prevent the formation of proinflammatory oxidized phospholipids. These oxidized phospholipids negatively regulate the activities of the HDL-associated PON1 and several other anti-inflammatory factors in HDL. During the acute phase response in rabbits, mice, and humans, there appears to be an increase in the formation of these oxidized lipids that results in the inhibition of the HDL-associated PON1 and an association of acute phase proteins with HDL that renders HDL proinflammatory. Low serum HDL is a risk factor for atherosclerosis and attempts are directed toward therapies to improve the quality and the relative concentrations of LDL and HDL. Apolipoprotein A-I (apoA-I) has been shown to reduce atherosclerotic lesions in laboratory animals. ApoA-I, however, is a large protein and needs to be administered parenterally, and it is costly. We have developed apoA-I mimetic peptides that are much smaller than apoA-I, and much more effective in removing the oxidized phospholipids and other oxidized lipids. These mimetic peptides improve LDL and HDL composition and function and reduce lesion formation in animal models of atherogenesis. Following is a brief description of some of the HDL mimetic peptides that can improve HDL and the effect of the peptide on PON1 activity.

    View details for DOI 10.1007/978-1-60761-350-3_15

    View details for Web of Science ID 000276140000015

    View details for PubMedID 20221879

  • Dyslipidemia and cardiovascular diseases CURRENT OPINION IN LIPIDOLOGY Mahdavi, H., Kim, J. B., Safarpour, S., Tien, D. A., Navab, M. 2009; 20 (2): 157-158

    View details for DOI 10.1097/MOL.0b013e32832956ed

    View details for Web of Science ID 000264956600013

    View details for PubMedID 19276898

  • The effect of transvenous pacemaker and implantable cardioverter defibrillator lead placement on tricuspid valve function: An observational study JOURNAL OF THE AMERICAN SOCIETY OF ECHOCARDIOGRAPHY Kim, J. B., Spevack, D. M., Tunick, P. A., Bullinga, J. R., Kronzon, I., Chinitz, L. A., Reynolds, H. R. 2008; 21 (3): 284-287

    Abstract

    This study assessed the effect of transtricuspid placement of permanent pacemaker (PPM) and implantable cardioverter defibrillator (ICD) leads on tricuspid regurgitation (TR) in 248 patients with echocardiograms before and after placement. Some 21.2% of patients with baseline mild TR or less developed abnormal TR (3.4% mild-moderate, 12.8% moderate, 1.1% moderate-severe, 3.9% severe) after implant. TR worsened by 1 grade or more after implant in 24.2% (20.7% of PPMs vs. 32.4% of ICDs; P < .05). TR worsening was more common with ICDs than PPMs in patients with baseline mild TR or less. After lead implantation, abnormal TR developed in 21.2% and severe TR developed in 3.9% of patients with initially normal TR. TR worsened by at least 1 grade in 24.2%. Patients with ICDs had a higher rate of TR worsening compared with patients with PPMs (32.4% vs. 20.1%; P < .05).

    View details for DOI 10.1016/j.echo.2007.05.022

    View details for Web of Science ID 000254081900014

    View details for PubMedID 17604958

Footer Links:

Stanford Medicine Resources: