Bio

Clinical Focus


  • Child and Adolescent Psychiatry
  • Psychology
  • Autism and Developmental Disabilities
  • Psychology, Child and Adolescent

Academic Appointments


Administrative Appointments


  • Co-Director, Autism and Developmental Disabilities Clinic, Stanford Child Psychiatry Clinic (2011 - Present)

Professional Education


  • University of Texas Southwestern Medical Center (1999) TX
  • Internship:University of Texas Southwestern Medical Center (1999) TX
  • Fellowship:Stanford University School of Medicine (2002) CA
  • Fellowship:Arizona State University (2001) AR
  • BS, Texas A&M University, Psychology (1995)
  • Ph.D., UT Southwestern Medical Center, Clinical Psychology (1999)

Research & Scholarship

Current Research and Scholarly Interests


Autism spectrum disorders, young child assessment, developmental disabilities

Clinical Trials


  • An Evaluation of a Developmentally-Based Parent Training Program for Children With Autism Recruiting

    The purpose of this study is to assess the efficacy of a parent training program in the treatment of social and communication deficits in children with autism. Specifically, this study will evaluate a developmentally based parent delivered intervention in the community developed by Pacific Autism Center for Education (PACE).

    View full details

Teaching

2013-14 Courses


Publications

Journal Articles


  • Brain Organization Underlying Superior Mathematical Abilities in Children with Autism BIOLOGICAL PSYCHIATRY Iuculano, T., Rosenberg-Lee, M., Supekar, K., Lynch, C. J., Khouzam, A., Phillips, J., Uddin, L. Q., Menon, V. 2014; 75 (3): 223-230

    Abstract

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and communication deficits. While such deficits have been the focus of most research, recent evidence suggests that individuals with ASD may exhibit cognitive strengths in domains such as mathematics.Cognitive assessments and functional brain imaging were used to investigate mathematical abilities in 18 children with ASD and 18 age-, gender-, and IQ-matched typically developing (TD) children. Multivariate classification and regression analyses were used to investigate whether brain activity patterns during numerical problem solving were significantly different between the groups and predictive of individual mathematical abilities.Children with ASD showed better numerical problem solving abilities and relied on sophisticated decomposition strategies for single-digit addition problems more frequently than TD peers. Although children with ASD engaged similar brain areas as TD children, they showed different multivariate activation patterns related to arithmetic problem complexity in ventral temporal-occipital cortex, posterior parietal cortex, and medial temporal lobe. Furthermore, multivariate activation patterns in ventral temporal-occipital cortical areas typically associated with face processing predicted individual numerical problem solving abilities in children with ASD but not in TD children.Our study suggests that superior mathematical information processing in children with ASD is characterized by a unique pattern of brain organization and that cortical regions typically involved in perceptual expertise may be utilized in novel ways in ASD. Our findings of enhanced cognitive and neural resources for mathematics have critical implications for educational, professional, and social outcomes for individuals with this lifelong disorder.

    View details for DOI 10.1016/j.biopsych.2013.06.018

    View details for Web of Science ID 000329130500011

    View details for PubMedID 23954299

  • Brain hyperconnectivity in children with autism and its links to social deficits. Cell reports Supekar, K., Uddin, L. Q., Khouzam, A., Phillips, J., Gaillard, W. D., Kenworthy, L. E., Yerys, B. E., Vaidya, C. J., Menon, V. 2013; 5 (3): 738-747

    Abstract

    Autism spectrum disorder (ASD), a neurodevelopmental disorder affecting nearly 1 in 88 children, is thought to result from aberrant brain connectivity. Remarkably, there have been no systematic attempts to characterize whole-brain connectivity in children with ASD. Here, we use neuroimaging to show that there are more instances of greater functional connectivity in the brains of children with ASD in comparison to those of typically developing children. Hyperconnectivity in ASD was observed at the whole-brain and subsystems levels, across long- and short-range connections, and was associated with higher levels of fluctuations in regional brain signals. Brain hyperconnectivity predicted symptom severity in ASD, such that children with greater functional connectivity exhibited more severe social deficits. We replicated these findings in two additional independent cohorts, demonstrating again that at earlier ages, the brain of children with ASD is largely functionally hyperconnected in ways that contribute to social dysfunction. Our findings provide unique insights into brain mechanisms underlying childhood autism.

    View details for DOI 10.1016/j.celrep.2013.10.001

    View details for PubMedID 24210821

  • Head circumferences in twins with and without autism spectrum disorders. Journal of autism and developmental disorders Froehlich, W., Cleveland, S., Torres, A., Phillips, J., Cohen, B., Torigoe, T., Miller, J., Fedele, A., Collins, J., Smith, K., Lotspeich, L., Croen, L. A., Ozonoff, S., LaJonchere, C., Grether, J. K., Hallmayer, J. 2013; 43 (9): 2026-2037

    Abstract

    To determine the genetic relationship between head circumference (HC) and Autism Spectrum Disorders (ASDs). Twin pairs with at least one twin with an ASD were assessed. HCs in affected and unaffected individuals were compared, as were HC correlations in monozygotic and dizygotic pairs. 404 subjects, ages 4-18, were included. 20 % of males and 27 % of females with an ASD had macrocephaly. Unaffected co-twins showed similar rates (16 % of males and 22 % of females). Statistical analysis revealed no significant difference in HCs between affected and unaffected twins. Twins with ASDs and unaffected co-twins have similar HCs and increased rates of macrocephaly. Correlations demonstrated partial inheritance of HCs. Thus, macrocephaly may represent an endophenotype in ASDs.

    View details for DOI 10.1007/s10803-012-1751-1

    View details for PubMedID 23321801

  • Default Mode Network in Childhood Autism: Posteromedial Cortex Heterogeneity and Relationship with Social Deficits BIOLOGICAL PSYCHIATRY Lynch, C. J., Uddin, L. Q., Supekar, K., Khouzam, A., Phillips, J., Menon, V. 2013; 74 (3): 212-219

    Abstract

    BACKGROUND: The default mode network (DMN), a brain system anchored in the posteromedial cortex, has been identified as underconnected in adults with autism spectrum disorder (ASD). However, to date there have been no attempts to characterize this network and its involvement in mediating social deficits in children with ASD. Furthermore, the functionally heterogeneous profile of the posteromedial cortex raises questions regarding how altered connectivity manifests in specific functional modules within this brain region in children with ASD. METHODS: Resting-state functional magnetic resonance imaging and an anatomically informed approach were used to investigate the functional connectivity of the DMN in 20 children with ASD and 19 age-, gender-, and IQ-matched typically developing (TD) children. Multivariate regression analyses were used to test whether altered patterns of connectivity are predictive of social impairment severity. RESULTS: Compared with TD children, children with ASD demonstrated hyperconnectivity of the posterior cingulate and retrosplenial cortices with predominately medial and anterolateral temporal cortex. In contrast, the precuneus in ASD children demonstrated hypoconnectivity with visual cortex, basal ganglia, and locally within the posteromedial cortex. Aberrant posterior cingulate cortex hyperconnectivity was linked with severity of social impairments in ASD, whereas precuneus hypoconnectivity was unrelated to social deficits. Consistent with previous work in healthy adults, a functionally heterogeneous profile of connectivity within the posteromedial cortex in both TD and ASD children was observed. CONCLUSIONS: This work links hyperconnectivity of DMN-related circuits to the core social deficits in young children with ASD and highlights fundamental aspects of posteromedial cortex heterogeneity.

    View details for DOI 10.1016/j.biopsych.2012.12.013

    View details for Web of Science ID 000321443100012

    View details for PubMedID 23375976

  • Salience Network-Based Classification and Prediction of Symptom Severity in Children With Autism JAMA PSYCHIATRY Uddin, L. Q., Supekar, K., Lynch, C. J., Khouzam, A., Phillips, J., Feinstein, C., Ryali, S., Menon, V. 2013; 70 (8): 869-879

    Abstract

    IMPORTANCE Autism spectrum disorder (ASD) affects 1 in 88 children and is characterized by a complex phenotype, including social, communicative, and sensorimotor deficits. Autism spectrum disorder has been linked with atypical connectivity across multiple brain systems, yet the nature of these differences in young children with the disorder is not well understood. OBJECTIVES To examine connectivity of large-scale brain networks and determine whether specific networks can distinguish children with ASD from typically developing (TD) children and predict symptom severity in children with ASD. DESIGN, SETTING, AND PARTICIPANTS Case-control study performed at Stanford University School of Medicine of 20 children 7 to 12 years old with ASD and 20 age-, sex-, and IQ-matched TD children. MAIN OUTCOMES AND MEASURES Between-group differences in intrinsic functional connectivity of large-scale brain networks, performance of a classifier built to discriminate children with ASD from TD children based on specific brain networks, and correlations between brain networks and core symptoms of ASD. RESULTS We observed stronger functional connectivity within several large-scale brain networks in children with ASD compared with TD children. This hyperconnectivity in ASD encompassed salience, default mode, frontotemporal, motor, and visual networks. This hyperconnectivity result was replicated in an independent cohort obtained from publicly available databases. Using maps of each individual's salience network, children with ASD could be discriminated from TD children with a classification accuracy of 78%, with 75% sensitivity and 80% specificity. The salience network showed the highest classification accuracy among all networks examined, and the blood oxygen-level dependent signal in this network predicted restricted and repetitive behavior scores. The classifier discriminated ASD from TD in the independent sample with 83% accuracy, 67% sensitivity, and 100% specificity. CONCLUSIONS AND RELEVANCE Salience network hyperconnectivity may be a distinguishing feature in children with ASD. Quantification of brain network connectivity is a step toward developing biomarkers for objectively identifying children with ASD.

    View details for DOI 10.1001/jamapsychiatry.2013.104

    View details for Web of Science ID 000322833600013

    View details for PubMedID 23803651

  • Underconnectivity between voice-selective cortex and reward circuitry in children with autism PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Abrams, D. A., Lynch, C. J., Cheng, K. M., Phillips, J., Supekar, K., Ryali, S., Uddin, L. Q., Menon, V. 2013; 110 (29): 12060-12065

    Abstract

    Individuals with autism spectrum disorders (ASDs) often show insensitivity to the human voice, a deficit that is thought to play a key role in communication deficits in this population. The social motivation theory of ASD predicts that impaired function of reward and emotional systems impedes children with ASD from actively engaging with speech. Here we explore this theory by investigating distributed brain systems underlying human voice perception in children with ASD. Using resting-state functional MRI data acquired from 20 children with ASD and 19 age- and intelligence quotient-matched typically developing children, we examined intrinsic functional connectivity of voice-selective bilateral posterior superior temporal sulcus (pSTS). Children with ASD showed a striking pattern of underconnectivity between left-hemisphere pSTS and distributed nodes of the dopaminergic reward pathway, including bilateral ventral tegmental areas and nucleus accumbens, left-hemisphere insula, orbitofrontal cortex, and ventromedial prefrontal cortex. Children with ASD also showed underconnectivity between right-hemisphere pSTS, a region known for processing speech prosody, and the orbitofrontal cortex and amygdala, brain regions critical for emotion-related associative learning. The degree of underconnectivity between voice-selective cortex and reward pathways predicted symptom severity for communication deficits in children with ASD. Our results suggest that weak connectivity of voice-selective cortex and brain structures involved in reward and emotion may impair the ability of children with ASD to experience speech as a pleasurable stimulus, thereby impacting language and social skill development in this population. Our study provides support for the social motivation theory of ASD.

    View details for DOI 10.1073/pnas.1302982110

    View details for Web of Science ID 000322086100085

    View details for PubMedID 23776244

  • Socio-emotional processing and functioning of youth at high risk for bipolar disorder. Journal of affective disorders Whitney, J., Howe, M., Shoemaker, V., Li, S., Marie Sanders, E., Dijamco, C., Acquaye, T., Phillips, J., Singh, M., Chang, K. 2013; 148 (1): 112-117

    Abstract

    The goal of this study was to investigate differences in socio-emotional processing and functioning in children and adolescents at high risk for bipolar disorder (BD) and healthy control participants.Children and adolescents with a parent with bipolar disorder, who had mood dysregulation but not fully syndromal BD (high risk, HR, n=24), were compared to participants with no personal or family history of psychopathology (healthy control, HC, n=27) across several neuropsychological domains. Social reciprocity was measured by the Social Responsiveness Scale, theory of mind was measured by use of the NEPSY, and affect recognition was measured by the NEPSY and the Diagnostic Test of Nonverbal Accuracy 2 (DANVA).The HR group demonstrated significant impairment in social reciprocity, including impairments in social awareness, social cognition, social communication, social motivation, and autistic mannerisms. There were no significant group differences in performance on theory of mind or affect recognition tasks.Lack of impairment in tasks associated with theory of mind or affect recognition indicate that social functioning difficulties are not likely due to impairments in these areas, or that the measures employed were not sufficiently sensitive to detect group differences.Youth at high risk for BD demonstrated impairments in numerous social domains, which may be due to innate differences in brain development governing socio-emotional functioning or may be due to disruptions in normal development caused by mood regulation difficulties.

    View details for DOI 10.1016/j.jad.2012.08.016

    View details for PubMedID 23123133

  • Genetic Heritability and Shared Environmental Factors Among Twin Pairs With Autism ARCHIVES OF GENERAL PSYCHIATRY Hallmayer, J., Cleveland, S., Torres, A., Phillips, J., Cohen, B., Torigoe, T., Miller, J., Fedele, A., Collins, J., Smith, K., Lotspeich, L., Croen, L. A., Ozonoff, S., LaJonchere, C., Grether, J. K., Risch, N. 2011; 68 (11): 1095-1102

    Abstract

    Autism is considered the most heritable of neurodevelopmental disorders, mainly because of the large difference in concordance rates between monozygotic and dizygotic twins.To provide rigorous quantitative estimates of genetic heritability of autism and the effects of shared environment. Design, Setting, andTwin pairs with at least 1 twin with an autism spectrum disorder (ASD) born between 1987 and 2004 were identified through the California Department of Developmental Services.Structured diagnostic assessments (Autism Diagnostic Interview-Revised and Autism Diagnostic Observation Schedule) were completed on 192 twin pairs. Concordance rates were calculated and parametric models were fitted for 2 definitions, 1 narrow (strict autism) and 1 broad (ASD).For strict autism, probandwise concordance for male twins was 0.58 for 40 monozygotic pairs (95% confidence interval [CI], 0.42-0.74) and 0.21 for 31 dizygotic pairs (95% CI, 0.09-0.43); for female twins, the concordance was 0.60 for 7 monozygotic pairs (95% CI, 0.28-0.90) and 0.27 for 10 dizygotic pairs (95% CI, 0.09-0.69). For ASD, the probandwise concordance for male twins was 0.77 for 45 monozygotic pairs (95% CI, 0.65-0.86) and 0.31 for 45 dizygotic pairs (95% CI, 0.16-0.46); for female twins, the concordance was 0.50 for 9 monozygotic pairs (95% CI, 0.16-0.84) and 0.36 for 13 dizygotic pairs (95% CI, 0.11-0.60). A large proportion of the variance in liability can be explained by shared environmental factors (55%; 95% CI, 9%-81% for autism and 58%; 95% CI, 30%-80% for ASD) in addition to moderate genetic heritability (37%; 95% CI, 8%-84% for autism and 38%; 95% CI, 14%-67% for ASD).Susceptibility to ASD has moderate genetic heritability and a substantial shared twin environmental component.

    View details for DOI 10.1001/archgenpsychiatry.2011.76

    View details for Web of Science ID 000296649800004

    View details for PubMedID 21727249

  • Twins with KBG Syndrome and Autism JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS Hah, M., Lotspeich, L. J., Phillips, J. M., Torres, A. D., Cleveland, S. C., Hallmayer, J. F. 2009; 39 (12): 1744-1746

    View details for DOI 10.1007/s10803-009-0811-7

    View details for Web of Science ID 000271767400013

    View details for PubMedID 19597979

Footer Links:

Stanford Medicine Resources: