Academic Appointments

  • Instructor, Radiology

Honors & Awards

  • NIBIB Pathway to Independence Award (K99/R00), National Institute of Health (NIH) (2017)
  • Young Investigator Cum Laude Award (W. S. Moore Award Finalist), International Society of Magnetic Resonance in Medicine (2017)
  • ISMRM Junior Fellow, International Society of Magnetic Resonance in Medicine (2015)
  • National Institute of Biomedical Imaging and Bioengineering (NIBIB) Training Grant, National Institute of Health (NIH) (2010)
  • HHMI Interfaces Fellowship in Imaging Sciences, Howard Hughes Medical Institute (HHMI) (2007)
  • Young Investigator Award, International Workshop on Osteoarthritis Imaging (2017)
  • Distinguished Reviewer, Journal of Magnetic Resonance Imaging (2016, 2017)
  • Editors Recognition Award (Top 10 Most Downloaded Articles), Current Radiology Reports (2016)
  • Editors Pick Article, Magnetic Resonance in Medicine (2015)
  • Merit Award for Highest Scoring Trainee Abstract, International Workshop on OA Imaging (IWOAI) (2015)
  • Magna Cum Laude Merit Award, International Society of Magnetic Resonance in Medicine (2013)
  • Summa Cum Laude Merit Award, International Society of Magnetic Resonance in Medicine (2012, 2015)
  • Juan Grana Graduate Teaching Assistantship, University of Pennsylvania (2010)
  • Graduate Fellowship (Honorable Mention), National Science Foundation (NSF) (2007)

Professional Education

  • B.S, University of Rochester, Optics, Applied Math (2007)
  • Ph.D, University of Pennsylvania, Bioengineering (2013)
  • Postdoctoral Fellowship, Stanford University, Radiology (2015)

Research & Scholarship

Current Research and Scholarly Interests

My research is focused on the development and clinical translation of novel quantitative and molecularly specific imaging technologies geared toward detection of disease at the earliest causative stages. Specifically, I am motivated to study the causes and treatment of osteoarthritis (OA) and other musculoskeletal disorders, which have a large physical and financial impact but remain poorly understood. I am developing fast, volumetric chemical exchange saturation transfer (CEST) methods for whole joint imaging of enzymatic degradation of proteoglycans in articular cartilage, an early marker of OA. I am also focused on developing methods for simultaneous musculoskeletal PET and MR imaging to correlate metabolic information about bone remodelling and inflammation from PET with high resolution quantitative MR imaging to detect the earliest changes in OA, in order to provide new insights into OA pathogenesis and ultimately therapies to arrest the onset and progression of OA. Other projects include rapid whole-joint imaging and simultaneous bilateral knee MRI.


All Publications

  • PET/MRI of Metabolic Activity in Osteoarthritis: A Feasibility Study JOURNAL OF MAGNETIC RESONANCE IMAGING Kogan, F., Fan, A. P., McWalter, E. J., Oei, E. H., Quon, A., Gold, G. E. 2017; 45 (6): 1736-1745

    View details for DOI 10.1002/jmri.25529

    View details for Web of Science ID 000401259900018

  • Volumetric Multislice GagCEST Imaging of Articular Cartilage: Optimization and Comparison With T1rho MAGNETIC RESONANCE IN MEDICINE Kogan, F., Hargreaves, B. A., Gold, G. E. 2017; 77 (3): 1134-1141

    View details for DOI 10.1002/mrm.26200

    View details for Web of Science ID 000397407800022

  • Method for high-resolution imaging of creatine in vivo using chemical exchange saturation transfer. Magnetic resonance in medicine Kogan, F., Haris, M., Singh, A., Cai, K., Debrosse, C., Nanga, R. P., Hariharan, H., Reddy, R. 2014; 71 (1): 164-172


    To develop a chemical exchange saturation transfer (CEST)-based technique to measure free creatine (Cr) and to validate the technique by measuring the distribution of Cr in muscle with high spatial resolution before and after exercise.Phantom studies were performed to determine contributions from other Cr kinase metabolites to the CEST effect from Cr (CrCEST). CEST, T2 , magnetization transfer ratio and (31) P magnetic resonance spectroscopy acquisitions of the lower leg were performed before and after plantar flexion exercise on a 7T whole-body magnetic resonance scanner on healthy volunteers.Phantom studies demonstrated that while Cr exhibited significant CEST effect there were no appreciable contributions from other metabolites. In healthy human subjects, following mild plantar flexion exercise, increases in the CEST effect from Cr were observed, which recovered exponentially back to baseline. This technique exhibited good spatial resolution and was able to differentiate differences in muscle utilization among subjects. The CEST effect from Cr results were compared with (31) P magnetic resonance spectroscopy results showing good agreement in the Cr and phosphocreatine recovery kinetics.Demonstrated a CEST-based technique to measure free Cr changes in in vivo muscle. The CEST effect from Cr imaging can spatially map changes in Cr concentration in muscle following mild exercise. This may serve as a tool for the diagnosis and treatment of various disorders affecting muscle. Magn Reson Med 71:164-172, 2014. © 2013 Wiley Periodicals, Inc.

    View details for DOI 10.1002/mrm.24641

    View details for PubMedID 23412909

  • A technique for in vivo mapping of myocardial creatine kinase metabolism. Nature medicine 2014


    ATP derived from the conversion of phosphocreatine to creatine by creatine kinase provides an essential chemical energy source that governs myocardial contraction. Here, we demonstrate that the exchange of amine protons from creatine with protons in bulk water can be exploited to image creatine through chemical exchange saturation transfer (CrEST) in myocardial tissue. We show that CrEST provides about two orders of magnitude higher sensitivity compared to (1)H magnetic resonance spectroscopy. Results of CrEST studies from ex vivo myocardial tissue strongly correlate with results from (1)H and (31)P magnetic resonance spectroscopy and biochemical analysis. We demonstrate the feasibility of CrEST measurement in healthy and infarcted myocardium in animal models in vivo on a 3-T clinical scanner. As proof of principle, we show the conversion of phosphocreatine to creatine by spatiotemporal mapping of creatine changes in the exercised human calf muscle. We also discuss the potential utility of CrEST in studying myocardial disorders.

    View details for DOI 10.1038/nm.3436

    View details for PubMedID 24412924

  • Imaging of glutamate in the spinal cord using GluCEST NEUROIMAGE Kogan, F., Singh, A., Debrosse, C., Haris, M., Cai, K., Nanga, R. P., Elliott, M., Hariharan, H., Reddy, R. 2013; 77: 262-267


    Glutamate (Glu) is the most abundant excitatory neurotransmitter in the brain and spinal cord. The concentration of Glu is altered in a range of neurologic disorders that affect the spinal cord including multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS) and spinal cord injury. Currently available magnetic resonance spectroscopy (MRS) methods for measuring Glu are limited to low spatial resolution, which makes it difficult to measure differences in gray and white matter glutamate. Recently, it has been shown that Glu exhibits a concentration dependent chemical exchange saturation transfer (CEST) effect between its amine (-NH2) group protons and bulk water protons (GluCEST). Here, we demonstrate the feasibility of imaging glutamate in the spinal cord at 7T using the GluCEST technique. Results from healthy human volunteers (N=7) showed a significantly higher (p<0.001) GluCESTasym from gray matter (6.6±0.3%) compared to white matter (4.8±0.4%). Potential overlap of CEST signals from other spinal cord metabolites with the observed GluCESTasym is discussed. This noninvasive approach potentially opens the way to image Glu in vivo in the spinal cord and to monitor its alteration in many disease conditions.

    View details for DOI 10.1016/j.neuroimage.2013.03.072

    View details for Web of Science ID 000320073900026

    View details for PubMedID 23583425

  • Magnetic resonance imaging of glutamate NATURE MEDICINE Cai, K., Haris, M., Singh, A., Kogan, F., Greenberg, J. H., Hariharan, H., Detre, J. A., Reddy, R. 2012; 18 (2): 302-306


    Glutamate, a major neurotransmitter in the brain, shows a pH- and concentration-dependent chemical exchange saturation transfer effect (GluCEST) between its amine group and bulk water, with potential for in vivo imaging by nuclear magnetic resonance. GluCEST asymmetry is observed ?3 p.p.m. downfield from bulk water. Middle cerebral artery occlusion in the rat brain resulted in an ?100% elevation of GluCEST in the ipsilateral side compared with the contralateral side, predominantly owing to pH changes. In a rat brain tumor model with blood-brain barrier disruption, intravenous glutamate injection resulted in a clear elevation of GluCEST and a similar increase in the proton magnetic resonance spectroscopy signal of glutamate. GluCEST maps from healthy human brain were also obtained. These results demonstrate the feasibility of using GluCEST for mapping relative changes in glutamate concentration, as well as pH, in vivo. Contributions from other brain metabolites to the GluCEST effect are also discussed.

    View details for Web of Science ID 000300140300047

    View details for PubMedID 22270722

  • Perfusion has no effect on the in vivo CEST effect from Cr (CrCEST) in skeletal muscle. NMR in biomedicine Kogan, F., Stafford, R. B., Englund, E. K., Gold, G. E., Hariharan, H., Detre, J. A., Reddy, R. 2017; 30 (1)


    Creatine, a key component of muscle energy metabolism, exhibits a chemical exchange saturation transfer (CEST) effect between its amine group and bulk water, which has been exploited to spatially and temporally map creatine changes in skeletal muscle before and after exercise. In addition, exercise leads to an increase in muscle perfusion. In this work, we determined the effects of perfused blood on the CEST effects from creatine in skeletal muscle. Experiments were performed on healthy human subjects (n = 5) on a whole-body Siemens 7T magnetic resonance imaging (MRI) scanner with a 28-channel radiofrequency (RF) coil. Reactive hyperemia, induced by inflation and subsequent deflation of a pressure cuff secured around the thigh, was used to increase tissue perfusion whilst maintaining the levels of creatine kinase metabolites. CEST, arterial spin labeling (ASL) and (31) P MRS data were acquired at baseline and for 6 min after cuff deflation. Reactive hyperemia resulted in substantial increases in perfusion in human skeletal muscle of the lower leg as measured by the ASL mean percentage difference. However, no significant changes in CrCEST asymmetry (CrCESTasym ) or (31) P MRS-derived PCr levels of skeletal muscle were observed following cuff deflation. This work demonstrates that perfusion changes do not have a major confounding effect on CrCEST measurements.

    View details for DOI 10.1002/nbm.3673

    View details for PubMedID 27898185

  • Potential of PET-MRI for imaging of non-oncologic musculoskeletal disease. Quantitative imaging in medicine and surgery Kogan, F., Fan, A. P., Gold, G. E. 2016; 6 (6): 756-771


    Early detection of musculoskeletal disease leads to improved therapies and patient outcomes, and would benefit greatly from imaging at the cellular and molecular level. As it becomes clear that assessment of multiple tissues and functional processes are often necessary to study the complex pathogenesis of musculoskeletal disorders, the role of multi-modality molecular imaging becomes increasingly important. New positron emission tomography-magnetic resonance imaging (PET-MRI) systems offer to combine high-resolution MRI with simultaneous molecular information from PET to study the multifaceted processes involved in numerous musculoskeletal disorders. In this article, we aim to outline the potential clinical utility of hybrid PET-MRI to these non-oncologic musculoskeletal diseases. We summarize current applications of PET molecular imaging in osteoarthritis (OA), rheumatoid arthritis (RA), metabolic bone diseases and neuropathic peripheral pain. Advanced MRI approaches that reveal biochemical and functional information offer complementary assessment in soft tissues. Additionally, we discuss technical considerations for hybrid PET-MR imaging including MR attenuation correction, workflow, radiation dose, and quantification.

    View details for DOI 10.21037/qims.2016.12.16

    View details for PubMedID 28090451

    View details for PubMedCentralID PMC5219958

  • T-2 Relaxation time quantitation differs between pulse sequences in articular cartilage JOURNAL OF MAGNETIC RESONANCE IMAGING Matzat, S. J., McWalter, E. J., Kogan, F., Chen, W., Gold, G. E. 2015; 42 (1): 105-113


    To compare T2 relaxation time measurements between MR pulse sequences at 3 Tesla in agar phantoms and in vivo patellar, femoral, and tibial articular cartilage.T2 relaxation times were quantified in phantoms and knee articular cartilage of eight healthy individuals using a single echo spin echo (SE) as a reference standard and five other pulse sequences: multi-echo SE (MESE), fast SE (2D-FSE), magnetization-prepared spoiled gradient echo (3D-MAPSS), three-dimensional (3D) 3D-FSE with variable refocusing flip angle schedules (3D vfl-FSE), and quantitative double echo steady state (qDESS). Cartilage was manually segmented and average regional T2 relaxation times were obtained for each sequence. A regression analysis was carried out between each sequence and the reference standard, and root-mean-square error (RMSE) was calculated.Phantom measurements from all sequences demonstrated strong fits (R(2) ?>?0.8; P?

    View details for DOI 10.1002/jmri.24757

    View details for Web of Science ID 000356625500012

    View details for PubMedID 25244647

  • Imaging Strategies for Assessing Cartilage Composition in Osteoarthritis CURRENT RHEUMATOLOGY REPORTS Matzat, S. J., Kogan, F., Fong, G. W., Gold, G. E. 2014; 16 (11)
  • In Vivo Chemical Exchange Saturation Transfer Imaging of Creatine (CrCEST) in Skeletal Muscle at 3T JOURNAL OF MAGNETIC RESONANCE IMAGING Kogan, F., Haris, M., Debrosse, C., Singh, A., Nanga, R. P., Cai, K., Hariharan, H., Reddy, R. 2014; 40 (3): 596-602


    To characterize the chemical exchange saturation transfer (CEST)-based technique to measure free creatine (Cr), a key component of muscle energy metabolism, distribution in skeletal muscle with high spatial resolution before and after exercise at 3T.CrCEST saturation parameters were empirically optimized for 3T. CEST, T2 , magnetization transfer ratio (MTR), and (31) P magnetic resonance spectroscopy (MRS) acquisitions of the lower leg were performed before and after mild plantar flexion exercise on a 3T whole-body MR scanner on six healthy volunteers.The feasibility of imaging Cr changes in skeletal muscle following plantar flexion exercise using CrCEST was demonstrated at 3T. This technique exhibited good spatial resolution and was able to differentiate differences in muscle use among subjects. The CrCEST results were compared with (31) P MRS results, showing good agreement in the Cr and PCr recovery kinetics. A relationship of 0.45% CrCESTasym /mM Cr was observed across all subjects.It is demonstrated that the CrCEST technique could be applied at 3T to measure dynamic changes in creatine in muscle in vivo. The widespread availability and clinical applicability of 3T scanners has the potential to clinically advance this method.

    View details for DOI 10.1002/jmri.24412

    View details for Web of Science ID 000340538200011

    View details for PubMedID 24925857

  • In vivo Magnetic Resonance Imaging of Tumor Protease Activity SCIENTIFIC REPORTS Haris, M., Singh, A., Mohammed, I., Ittyerah, R., Nath, K., Nanga, R. P., Debrosse, C., Kogan, F., Cai, K., Poptani, H., Reddy, D., Hariharan, H., Reddy, R. 2014; 4


    Increased expression of cathepsins has diagnostic as well as prognostic value in several types of cancer. Here, we demonstrate a novel magnetic resonance imaging (MRI) method, which uses poly-L-glutamate (PLG) as an MRI probe to map cathepsin expression in vivo, in a rat brain tumor model. This noninvasive, high-resolution and non-radioactive method exploits the differences in the CEST signals of PLG in the native form and cathepsin mediated cleaved form. The method was validated in phantoms with known physiological concentrations, in tumor cells and in an animal model of brain tumor along with immunohistochemical analysis. Potential applications in tumor diagnosis and evaluation of therapeutic response are outlined.

    View details for DOI 10.1038/srep06081

    View details for Web of Science ID 000340711400001

    View details for PubMedID 25124082

  • High Resolution T1 rho Mapping of In Vivo Human Knee Cartilage at 7T PLOS ONE Singh, A., Haris, M., Cai, K., Kogan, F., Hariharan, H., Reddy, R. 2014; 9 (5)


    Spin lattice relaxation time in rotating frame (T1?) mapping of human knee cartilage has shown promise in detecting biochemical changes during osteoarthritis. Due to higher field strength, MRI at 7T has advantages in term of SNR compared to clinical MR scanners and this can be used to increase in image resolution. Objective of current study was to evaluate the feasibility of high resolution T1? mapping of in vivo human knee cartilage at 7T MR scanner.In this study we have used a T1? prepared GRE pulse sequence for obtaining high resolution (in plan resolution ?=?0.2 mm2) T1? MRI of human knee cartilage at 7T. The effect of a global and localized reference frequency and reference voltage setting on B0, B1 and T1? maps in cartilage was evaluated. Test-retest reliability results of T1? values from asymptomatic subjects as well as T1? maps from abnormal cartilage of two human subjects are presented. These results are compared with T1? MRI data obtained from 3T.Our approach enabled acquisition of 3D-T1? data within allowed SAR limits at 7T. SNR of cartilage on T1? weighted images was greater than 90. Off-resonance effects present in the cartilage B0, B1 and T1? maps obtained using global shim and reference frequency and voltage setting, were reduced by the proposed localized reference frequency and voltage setting. T1? values of cartilage obtained with the localized approach were reproducible. Abnormal knee cartilage showed elevated T1? values in affected regions. T1? values at 7T were significantly lower (p<0.05) compared to those obtained at 3T.In summary, by using proposed localized frequency and voltage setting approach, high-resolution 3D-T1? maps of in vivo human knee cartilage can be obtained in clinically acceptable scan times (<30 min) and SAR constraints, which provides the ability to characterize cartilage molecular integrity.

    View details for DOI 10.1371/journal.pone.0097486

    View details for Web of Science ID 000336789500067

    View details for PubMedID 24830386

  • MICEST: A potential tool for non-invasive detection of molecular changes in Alzheimer's disease JOURNAL OF NEUROSCIENCE METHODS Haris, M., Singh, A., Cai, K., Nath, K., Crescenzi, R., Kogan, F., Hariharan, H., Reddy, R. 2013; 212 (1): 87-93


    Myo-inositol (mIns) is a marker of glial cells proliferation and has been shown to increase in early Alzheimer's disease (AD) pathology. mIns exhibits a concentration dependent chemical-exchange-saturation-transfer (CEST) effect (MICEST) between its hydroxyl groups and bulk water protons. Using the endogenous MICEST technique brain mIns concentration and glial cells proliferation can be mapped at high spatial resolution. The high resolution mapping of mIns was performed using MICEST technique on ?20 months old APP-PS1 transgenic mouse model of AD as well as on age matched wild type (WT) control (n=5). The APP-PS1 mice show ?50% higher MICEST contrast than WT control with concomitant increase in mIns concentration as measured through proton spectroscopy. Immunostaining against glial-fibric-acidic protein also depicts proliferative glial cells in larger extent in APP-PS1 than WT mice, which correspond to the higher mIns concentration. Potential significance of MICEST in early detection of AD pathology is discussed in detail.

    View details for DOI 10.1016/j.jneumeth.2012.09.025

    View details for Web of Science ID 000313390600009

    View details for PubMedID 23041110

  • Chemical Exchange Saturation Transfer (CEST) Imaging: Description of Technique and Potential Clinical Applications. Current radiology reports 2013; 1 (2): 102?14


    Chemical exchange saturation transfer (CEST) is a magnetic resonance imaging (MRI) contrast enhancement technique that enables indirect detection of metabolites with exchangeable protons. Endogenous metabolites with exchangeable protons including many endogenous proteins with amide protons, glycosaminoglycans (GAG), glycogen, myo-inositol (MI), glutamate (Glu), creatine (Cr) and several others have been identified as potential in vivo endogenous CEST agents. These endogenous CEST agents can be exploited as non-invasive and non-ionizing biomarkers of disease diagnosis and treatment monitoring. This review focuses on the recent technical developments in endogenous in vivo CEST MRI from various metabolites as well as their potential clinical applications. The basic underlying principles of CEST, its potential limitations and new techniques to mitigate them are discussed.

    View details for DOI 10.1007/s40134-013-0010-3

    View details for PubMedID 23730540

  • Exchange rates of creatine kinase metabolites: feasibility of imaging creatine by chemical exchange saturation transfer MRI NMR IN BIOMEDICINE Haris, M., Nanga, R. P., Singh, A., Cai, K., Kogan, F., Hariharan, H., Reddy, R. 2012; 25 (11): 1305-1309


    Creatine (Cr), phosphocreatine (PCr) and adenosine-5-triphosphate (ATP) are major metabolites of the enzyme creatine kinase (CK). The exchange rate of amine protons of CK metabolites at physiological conditions has been limited. In the current study, the exchange rate and logarithmic dissociation constant (pKa) of amine protons of CK metabolites were calculated. Further, the chemical exchange saturation transfer effect (CEST) of amine protons of CK metabolites with bulk water was explored. At physiological temperature and pH, the exchange rate of amine protons in Cr was found to be 7-8 times higher than PCr and ATP. A higher exchange rate in Cr was associated with lower pKa value, suggesting faster dissociation of its amine protons compared to PCr and ATP. CEST MR imaging of these metabolites in vitro in phantoms displayed predominant CEST contrast from Cr and negligible contribution from PCr and ATP with the saturation pulse parameters used in the current study. These results provide a new method to perform high-resolution proton imaging of Cr without contamination from PCr. Potential applications of these finding are discussed.

    View details for DOI 10.1002/nbm.2792

    View details for Web of Science ID 000310237400013

    View details for PubMedID 22431193

  • Chemical exchange saturation transfer magnetic resonance imaging of human knee cartilage at 3 T and 7 T MAGNETIC RESONANCE IN MEDICINE Singh, A., Haris, M., Cai, K., Kassey, V. B., Kogan, F., Reddy, D., Hariharan, H., Reddy, R. 2012; 68 (2): 588-594


    The sensitivity of chemical exchange saturation transfer (CEST) on glycosaminoglycans (GAGs) in human knee cartilage (gagCEST) in vivo was evaluated at 3 and 7 T field strengths. Calculated gagCEST values without accounting for B(0) inhomogeneity (~0.6 ppm) were >20%. After B(0) inhomogeneity correction, calculated gagCEST values were negligible at 3 T and ~6% at 7 T. These results suggest that accurate B(0) correction is a prerequisite for observing reliable gagCEST. Results obtained with varying saturation pulse durations and amplitudes as well as the consistency between numerical simulations and our experimental results indicate that the negligible gagCEST observed at 3 T is due to direct saturation effects and fast exchange rate. As GAG loss from cartilage is expected to result in a further reduction in gagCEST, gagCEST method is not expected to be clinically useful at 3 T. At high fields such as 7 T, this method holds promise as a viable clinical technique.

    View details for DOI 10.1002/mrm.23250

    View details for Web of Science ID 000306318900031

    View details for PubMedID 22213239

  • Investigation of chemical exchange at intermediate exchange rates using a combination of chemical exchange saturation transfer (CEST) and spin-locking methods (CESTrho) MAGNETIC RESONANCE IN MEDICINE Kogan, F., Singh, A., Cai, K., Haris, M., Hariharan, H., Reddy, R. 2012; 68 (1): 107-119


    Proton exchange imaging is important as it allows for visualization and quantification of the distribution of specific metabolites with conventional MRI. Current exchange mediated MRI methods suffer from poor contrast as well as confounding factors that influence exchange rates. In this study we developed a new method to measure proton exchange which combines chemical exchange saturation transfer and T(1)(?) magnetization preparation methods (CESTrho). We demonstrated that this new CESTrho sequence can detect proton exchange in the slow to intermediate exchange regimes. It has a linear dependence on proton concentration which allows it to be used to quantitatively measure changes in metabolite concentration. Additionally, the magnetization scheme of this new method can be customized to make it insensitive to changes in exchange rate while retaining its dependency on solute concentration. Finally, we showed the feasibility of using CESTrho in vivo. This sequence is able to detect proton exchange at intermediate exchange rates and is unaffected by the confounding factors that influence proton exchange rates thus making it ideal for the measurement of metabolites with exchangeable protons in this exchange regime.

    View details for DOI 10.1002/mrm.23213

    View details for Web of Science ID 000305119100011

    View details for PubMedID 22009759

  • Imaging of glutamate neurotransmitter alterations in Alzheimer's disease. NMR in biomedicine 2012


    Glutamate (Glu) is a major excitatory neurotransmitter in the brain and has been shown to decrease in the early stages of Alzheimer's disease (AD). Using a glutamate chemical (amine) exchange saturation transfer (GluCEST) method, we imaged the change in [Glu] in the APP-PS1 transgenic mouse model of AD at high spatial resolution. Compared with wild-type controls, AD mice exhibited a notable reduction in GluCEST contrast (~30%) in all areas of the brain. The change in [Glu] was further validated through (1) H MRS. A positive correlation was observed between GluCEST contrast and (1) H MRS-measured Glu/total creatine ratio. This method potentially provides a novel noninvasive biomarker for the diagnosis of the disease in preclinical stages and enables the development of disease-modifying therapies for AD. Copyright © 2012 John Wiley & Sons, Ltd.

    View details for DOI 10.1002/nbm.2875

    View details for PubMedID 23045158

Footer Links:

Stanford Medicine Resources: